Document Type : Original Research Article


1 Department of Chemistry, Payame Noor University, 19395-4697 Tehran, Iran

2 Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

3 Department of Chemistry, Semnan University, Semnan 35351-19111, Iran



In this study, Nd-doped cobalt oxide (Nd-Co3O4) nanoparticles were prepared by a combustion synthesis procedure using Co(acac)3 complex. The nanoparticles were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Then, the effect of Nd-Co3O4 on the electrocatalytic activity of gold nanodendrites (AuNDs) electrodeposited on a glassy carbon electrode (GCE) for ethanol oxidation was studied. The results showed that the Nd-Co3O4/AuNDs/GCE presents higher active surface area and current density (about 2 times) for the ethanol oxidation compared with the AuNDs/GCE.  Cyclic voltammetry and chrono-potentiometry methods proved that the Nd-Co3O4/AuNDs/GCE is able to increase a long-term stability of electrode in alkaline ethanol fuel cell by providing OHads species at the surface of the catalysts. Consequently, the Nd-Co3O4/AuNDs/GCE, as an anodic electrode, reveals potent catalytic activity for ethanol oxidation in alkaline media.

Graphical Abstract

Au nano dendrites/composition optimized Nd-dopped cobalt oxide as an efficient electrocatalyst for ethanol oxidation


[1] P. Baile, E. Fernández, L. Vidal, A. Canals, Analyst., 2019, 144, 366-387.
[2] S. Sun, L. Sun, S. Xi, Y. Du, M.U. Anu Prathap, Z. Wang, Q. Zhang, A. Fisher, Z.J. Xu, Electrochim. Acta., 2017, 228, 183-194.
[3] C. Coutanceau, S. Baranton, R.S. Bitty Kouamé, Front. Chem., 2019, 7, 1-15.
[4] K.K. Tintula, S. Pitchumani, P. Sridhar, A.K. Shukla, J. Chem. Sci., 2010, 122, 381-389.
[5] S. Sun, Z.J. Xu, Electrochim. Acta., 2015, 165, 56-66.
[6] S. Sun, Y. Zhou, B. Hu, Q. Zhang, Z.J. Xu, J. Electrochem. Soc., 2015, 163, H99-H104.
[7] E. Antolini, J. Perez, Int. J. Hydrog. Energy, 2011, 36, 15752-15765.
[8] S.W. Song, W.S. Choi, H. Kang, S.W. Baek, A.K.  Azad, J.Y. Park, J.H.  Kim, Int. J. Hydrog. Energy, 2018, 43, 11378- 11385.
[9] E. Lee, I.S. Park, A. Manthiram, J. Phys. Chem. C, 2010, 114, 10634-10640.
[10] M.  Beltrán-Gastélum,  M.I. Salazar-Gastélum, J.R. Flores-Hernández, G.G. Botte, S. Pérez-Sicairos, T. Romero-Castañon, E. Reynoso-Soto, R.M.R.M. Félix-Navarro, Energy, 2019, 181, 1225-1234.
[11] G. Karim-Nezhad, S. Pashazadeh, A. Pashazadeh, Chin. J. Catal., 2012, 33, 1809-1816.
[12] K. Nguyen, N. Duc Hoa, C. Manh Hung, D.T. Thanh Le, N.V. Duy,  N. Van Hieu, RSC Adv., 2018, 8, 19449-19455.
[13] M. Salehia, R. Abdoos, B. Bahramian, J. Appli. Chem., 2018, 12, 99-116.
[14] M. Galini, M. Salehi, M.Behza, J. Nanostruct., 2018, 8, 391-403.
[15] A.B.  Vennela, D. Mangalaraj, N. Muthukumarasamy, S. Agilan, K.V. Hemalatha, Int. J. Electrochem. Sci., 2019, 14, 3535-3552.
[16] Z. Wen, L. Zhu, W. Mei, L. Hu, Y. Li, L. Sun L, Sens. Actuators B, 2013, 186, 172-179.
[17] J.A. Gaddsden, Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworth, London, 1975, p. 44.
[18] H.Y. Wang, S.F. Hung, H.Y. Chen, T.S. Chan, H.M. Chen, B. Liu, J. Am. Chem. Soc., 2016, 138, 36- 39.
[19] A.M.  Ouf, A.M. Abd Elhafeez, A.A, El-Shafei, J. Solid State Electrochem., 2008,  12, 601-607.
[20] M. Pacios, M. Del Valle, J.  Bartroli, M. Esplandiu, J. Electroanal. Chem., 2008, 619, 117-124.
[21] K.M. El-Khatiba, R.M.  Abdel Hameed, R.S. Amin, A.E. Fetohi, Int. J. Hydrogen Energ., 2017, 42, 14680-14696.
[22] Z. Nodehi, A.A. Rafati, A. Ghaffarinejad, Appl. Catal. A, 2018, 554, 24-34.
[23] A.E. Attar, L. Oularbi, S. Chemchoub, M. E. Rhazi, Int. J. Hydrogen Energ., 2020, DOI: 10.1016/j.ijhydene.2020.01.008
[24] R.K. Pandey, V. Lakshminarayanan, Appl. Catal. B, 2012, 125, 271-281.
[25] F. Yang, K. Cheng, K. Ye, X. Xiao, F. Guo, J. Yin, G. Wang, D. Cao, Electrochim. Acta., 2013, 114, 478-483.
[26] C. Wang, K. Zhang, H. Xu, Y. Du, M. C. Goh, J. Colloid Interf. Sci., 2019, 541, 258-268.