Document Type : Original Research Article

Authors

1 Department of Chemistry, Payame Noor University of ilam, Ilam, Iran

2 Department of chemistry, Islamic Azad University, Shahreza Branch, Isfahan, Iran

Abstract

The quantitative structure-retention relationship (QSRR) of nanoparticles in roadside atmosphere against the comprehensive two-dimensional gas chromatography which was coupled to high-resolution time-of-flight mass spectrometry was studied. The genetic algorithm (GA) was employed to select the variables that resulted in the best-fitted models. After the variables were selected, the linear multivariate regressions [e.g. the partial least squares (PLS)] as well as the nonlinear regressions [e.g. the kernel PLS (KPLS) and Levenberg- Marquardt artificial neural network (L-M ANN)] were utilized to construct the linear and nonlinear QSRR models. The correlation coefficient cross validation (Q2) and relative error for test set L-M ANN model are 0.939 and 4.89, respectively. The resulting data indicated that L-M ANN could be used as a powerful modeling tool for the QSPR studies.

Graphical Abstract

An improved structure models to explain retention behavior of atmospheric nanoparticles

Keywords

Main Subjects

Click on Google Scholar  for all information of this Article in google Scholar

[1] D.M. Brown, M.R.Wilson, W. MacNee, V. Stone, K. Donaldson, Toxicol. Appl. Pharm., 2001, 175, 191-199.
[2] K. Inoue, H. Takano, R. Yanagisawa, M. Sakurai, T. Ichinose, K. Sadakane, T. Yoshikawa, Respir. Res., 2005, 6, 106-113.
[3] G. Buzorius, A. Zelenyuk, F. Brechtel, D. Imre, Geophys Res Let., 2002, 29, 1974–1978.
[4] Zh. Chong-Shu, Ch-Ch. Chen, J-J. Cao, Ch-J. Tsai, Ch.C.-K. Chou, Sh-Ch. Liu, Atmos. Environ, 2010, 44, 2668-2673.
[5] S.S. Hang Ho, J. Zh. Yu, J. Chromatogr. A, 2004, 1059, 121–129.
[6] J. Dallüge, M. van Rijn, J. Beens, R.J.J. Vreuls, U.A.Th.Brinkman, J. Chromatogr. A, 2002, 965, 207-217.
[7] F. Adam, F. Bertoncini, N. Brodusch, E. Durand, D. Thiebaut, D. Espinat, M-C. Hennion, J. Chromatogr. A, 2007, 1148, 55–64.
[8] T. Hyölyläinen, M. Kallio, M. Shimmo, K. Saamio, K. Hartonen, M.L. Riekkola, in: Presentation at the First International Symposium on Two-Dimensional Gas Chromatography, Volendam, The Netherlands, 2003.
[9] C. Muhlen, C. Alcaraz Zini, E.B. Caramao, P.J. Marriott, J. Chromatogr. A., 2008, 1200, 34–42.
[10] M. Adahchour, M. Brandt, H.U. Baier, R.J.J. Vreuls, A.M. Batenburg, U.A.Th. Brinkman, J. Chromatogr. A., 2004, 1054, 57-65.
[11] J.F. Hamilton, P.J. Webb, A.C. Lewis, J.R. Hopkins, S. Smith, P. Davy, Atmos. Chem. Phys., 2004,4, 1279-1290.
[12] N. Ochiai, T. Ieda, K. Sasamoto, A. Fushimi, Sh. Hasegawa, K. Tanabe, Sh. Kobayashi, J. Chromatogr. A., 2007, 1150, 13–20.
[13] J. Leban, M. Baierl, J. Mies, V. Trentinaglia, S. Rath, K. Kronthaler, K. Wolf, A. Gotschlich, M.H.J. Seifert, J. Bioorg. Med. Chem. Lett.,2007, 17, 5858–5862.
[14] K. Bodzioch, A. Durand, R. Kaliszan, T. Bączek, Y. Vander Heyden, Talanta, 2010, 81, 1711-1718
[15] S. Riahi, E. Pourbasheer, M.R. Ganjali, P. Norouzi, J.Hazard.Mater.,2009, 166, 853-859.
[16] S.H. Woo, J. ChO, Y.S. Yun, H. Choi, Ch.S. Lee, D.S. Lee, J. Hazard. Mater.,2009, 161, 538–544
[17] N. Krämer, A.L. Boulesteix, G. Tutz, Chemom. Intell. Lab. Syst., 2008, 94, 60–69.
[18] S. Haykin, Neural Networks, Prentice-Hall, New Jersey, 1999.
[19] R. Todeschini, V.Consonni, A.Mauri, M.Pavan, DRAGON-Software for the calculation of molecular descriptors. Version 3.0 for Windows, 2003.
[20] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley–Longman, Reading, MA, USA, 2000.
[21] S. Riahi, E. Pourbasheer, R. Dinarvand, M.R. Ganjali, P. Norouzi, Exploring QSARs for antiviral activity of 4-alkylamino-6-(2-hydroxyethyl)-2- methylthiopyrimidines by support vector machine, Chem. Biol. Drug Des, 2008, 72, 205-216.
[22] J.A.d. Sousa, M.C. Hemmer, J. Casteiger, Prediction of H-1 NMR chemical shifts using neural networks, Anal. Chem., 2002, 74, 80-93.
[23] U. Depczynski, V.J. Frost, K. Molt, Genetic algorithms applied to the selection of factors in principal component regression, Anal. Chim. Acta., 2000, 420, 217-227.
[24] S. Wold, M. Sjostrom, L. Eriksson, PLS-regression: a basic tool of chemometrics, Chemom. Intell. Lab. Syst., 2001, 58, 109-130.
[25] B.M. Nicolai, K.I. Theron, J. Lammertyn, Chemom. Intell. Lab. Syst.,2007, 85, 243–252
[26] R. Rosipal, L.J. Trejo, J. Mach. Learning Res.,2001, 2, 97-123.
[27] J. Zupan, J. Gasteiger, Neural Network in Chemistry and Drug Design, Wiley–VCH, Weinheim, 1999.
[28] S. Kara, A.S. Güven, M. Okandan, F. Dirgenali, Comput. Biol. Med., 2006, 36, 473–483
[29] A. Yasri, D. Hartsough, J. Chem. Inf. Comput. Sci., 2001, 41, 1218-1227
[30] S. Kara, M. Okandan, Pattern Recognit,2007,40, 2967 – 2973
[31] M. Salvi, D. Dazzi, I. Pelistri, F. Neri, J.R. Wall, Ophthalmology, 2002, 109, 1703-1708.
[32] K.Kim, J.M.Lee, I.B. Lee, Chemom. Intell. Lab. Syst., 2005, 79, 22-30.
[33] J. Acevedo-Martınez, J.C. Escalona-Arranz, A. Villar-Rojas, F. Tellez-Palmero, R. Perez-Roses, L. Gonzalez, R. Carrasco-Velar, J. Chromatogr. A., 2006, 1102, 238-244.
[34] A. Afantitis, G. Melagraki, H. Sarimveis, P.A. Koutentis, J. Markopoulos, O. Igglessi-Markopoulou, Bioorg. Med. Chem.,  2006, 14, 6686-6694.
[35] A. Golbraikh, A. Tropsha, J. Mol. Graphics Modell, 2002, 20, 269-276.
[36] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, Germany, 2000.