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Abstract 

 The quantitative structure-retention relationship (QSRR) of nanoparticles in roadside 

atmosphere against the comprehensive two-dimensional gas chromatography which was coupled 

to high-resolution time-of-flight mass spectrometry was studied. The genetic algorithm (GA) was 

employed to select the variables that resulted in the best-fitted models. After the variables were 

selected, the linear multivariate regressions [e.g. the partial least squares (PLS)] as well as the 

nonlinear regressions [e.g. the kernel PLS (KPLS) and Levenberg- Marquardt artificial neural 

network (L-M ANN)] were utilized to construct the linear and nonlinear QSRR models. The 

correlation coefficient cross validation (Q2) and relative error for test set L-M ANN model are 

0.939 and 4.89, respectively. The resulting data indicated that L-M ANN could be used as a 

powerful modeling tool for the QSPR studies. 

Keywords: Atmospheric nanoparticles, QSRR, GA-KPLS, Levenberg -Marquardt artificial neural 

network. 
 

Introduction 

Atmospheric nanoparticles (diameter of 

particle: Dp <50 nm) and ultrafine particles 

(Dp < 100 nm) have received special attention 

due to their potential affect to human health 

[1,2]. These are ubiquitous in the troposphere 

and exert an important influence on the global 
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climate and environment. Increasing our 

understanding of the physical and chemical 

properties of aerosols is essential in order to 

properly assess their effects on various issues 

such as human health, air quality and global 

climate and ultimately establishing effective 

control strategies. The effects of atmospheric 

aerosol particles on the environment and also 

on human health are strongly dependent on 

their particle size and chemical composition 

[3]. Carbonaceous aerosol, including elemental 

carbon (EC, a chemical structure similar to 

impure graphite) and organic carbon (OC, a 

large variety of organic compounds), are 

important components of the Atmospheric 

nanoparticles [4]. 

For a time-series study, which was done 

to study the influence of organic aerosol 

compounds, it is necessary to have data of 

several compounds or groups of compounds at 

least with a daily resolution. Because most of 

the organic compounds occur in low 

concentrations in ambient aerosol, time-

consuming analytical methods are required in 

our analysis. Thermal desorption (TD) has 

been used for extracting organic compounds 

from atmospheric particles. Generally, 

Thermal desorption has been employed for 

extracting volatile and semi-volatile organic 

species from adsorbing matrices such as solid 

sorbent tubes [5]. 

Comprehensive two-dimensional gas 

chromatography (GC×GC) is a novel 

technique, whereby a sample is separated (in 

two dimensions) with two comprehensively 

coupled gas chromatographic columns. Two 

different chromatographic mechanisms (i.e. 

volatility and polarity) are used to separate the 

compounds in the two columns. A promising 

technique for analyzing the air pollution 

research is GC×GC coupled to fast time-of-

flight mass spectrometry (TOFMS) [6-8]. Due 

to the increased separation of GC×GC and also 

our one-dimensional GC, the mass spectra are 

of considerably increased quality (lower 

background level). 

The problem of skewing of mass spectra 

in GC–MS experiments with scanning mass 

analysers is also not present in time-of-flight 

mass spectrometry. Thus, TOFMSs provide 

identical mass spectral patterns over a 

complete chromatographic peak for the same 

component. The TOFMS systems can readily 

achieve the required spectral acquisition rates 

for reliable GC×GC peak assignment and 

quantification [9,10]. 

The combination of TD, GC×GC and 

TOF-MS allowed detection of more than 

10,000 individual organic compounds in 

aerosol samples [11]. For proper 

quantification, a more limited mass range 
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should be selected. Exact mass measurement 

(mass measurement with uncertainties of a few 

mDa) with fast acquisition (up to 25 Hz) have 

become available through recent progress in 

the GC–TOF-MS technology. In 2005, the 

coupling of GC×GC to a high resolution (HR) 

TOF-MS with an acquisition speed of 25 Hz 

was reported. The HRTOF-MS can be 

considered a candidate MS which provides 

high-resolution mass information for 

qualitative analysis in GC×GC [12]. 

In quantitative structure–retention 

relationships (QSRR), the retention of given 

chromatographic system was modeled as a 

solute (molecular) descriptors. 

Computationally determined retention 

parameters have become crucial in identifying 

potential nanoparticles candidates, and this 

technique is used in lead and clinical candidate 

optimization as well as in the selection of new 

compounds for screening. Only one report, 

dealing with QSRR nanoparticles calculation 

has been published in the literature [13]. 

The QSRR models which apply to partial 

least squares (PLS) method would often 

combine with genetic algorithms (GA) for 

feature selection [14, 15]. Because of the 

complexity of relationships between the 

property of molecules and structures, nonlinear 

models are also used to model the structure–

property relationships. Levenberg -Marquardt 

artificial neural network (L-M ANN) is 

nonparametric nonlinear modeling technique 

that has attracted increasing interest. In the 

recent years, nonlinear kernel-based 

algorithms as kernel partial least squares 

(KPLS) have been proposed [16,17]. The basic 

idea of KPLS is first to map each point in an 

original data space into a feature space via 

nonlinear mapping and then to develop a linear 

PLS model in the mapped space. According to 

Cover’s theorem, nonlinear data structure in 

the original space is most likely to be linear 

after high-dimensional nonlinear mapping 

[18]. Therefore, KPLS can efficiently compute 

latent variables in the feature space by means 

of integral operators and nonlinear kernel 

functions. Compared to other nonlinear 

methods, the main advantage of the kernel 

based algorithm is that it does not involve 

nonlinear optimization. It essentially requires 

only linear algebra, making it as simple as the 

conventional linear PLS.  In this research, GA-

PLS, GA-KPLS and L-M ANN were 

employed to generate QSRR models that 

correlate the structure of nanoparticles in 

roadside atmosphere. 
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Computational 

Data set 

Retention time of 40 nanoparticle 

compounds which were taken from the 

literature [12] is presented in Table 1. Thermal 

desorption- comprehensive two-dimensional 

gas chromatography-high resolution time-of-

flight mass spectrometry (TD–GC×GC–

HRTOF-MS) is applied to the analysis of 50 

nanoparticles fraction with a diameter of 29–

58 nm in roadside atmosphere. Sampling of 

size-resolved particles was performed with a 

low-pressure impactor. The separation in 

GC×GC was performed.  The data acquisition 

speed was 25 Hz. In the current research, 

retention data were collected by second column 

used for QSRR models. The RT of 

Atmospheric nanoparticles was decreased in 

the range of 5.08 and 1.02 for both 

benzo[ghi]perylene and toluene, respectively. 

Descriptor calculation 

All structures of compounds were drawn 

with the HyperChem 6.0 program. The pre 

optimization of all molecules were performed 

using MM+ molecular mechanics force field. 

A more precise optimization was done with 

the semiempirical AM1 method in 

HyperChem. The molecular structures were 

optimized using the Fletcher-Reeves algorithm 

until the root mean square gradient was 0.01. 

Moreover, the calculated values of the 

quantum chemical features of molecules will 

be influenced by the related conformation. In 

this study, an attempt was made to use the 

most stable conformations. Some quantum 

chemical descriptors such as dipole moment 

and orbital energies of LUMO and HOMO 

were calculated using the HyperChem 

program. The output files were transferred into 

the DRAGON 3.0 program to calculate 1497 

molecular descriptors [19]. 

Table 1. The data set and the corresponding observed and predicted RT values by L-M ANN for the cali-

bration, prediction and test sets. 

No Name RT Exp RT ANN RE (%) 

Calibration Set    

1 
Ethyl benzene 1.02 0.99 2.94 

2 
Styrene 1.17 1.21 3.42 

3 
Benzofuran 1.38 1.45 5.07 

4 
Furfural 1.54 1.60 3.90 

5 
Benzaldehyde 1.58 1.61 1.90 

6 
Nicotine 1.66 1.67 0.60 

7 
Naphtho[2,1-b]furan 1.83 1.78 2.73 
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8 
Quinoline 1.90 2.02 6.32 

9 
Nicotyrine 1.95 1.95 0.00 

10 
Benzophenone 1.99 2.16 8.54 

11 
Phthalic anhydride 2.03 2.08 2.46 

12 
Anthrone 2.07 2.05 0.97 

13 
Phenanthrened 2.11 2.18 3.32 

14 
9H-Fluorene-9-one 2.15 2.12 1.40 

15 
Fluoranthened 2.35 2.22 5.53 

16 
Pyrene, 2-methyl 2.40 2.24 6.67 

17 
9,10-Anthracenedione 2.48 2.51 1.21 

18 
Benzo[a]anthracened 2.68 2.75 2.61 

19 
Naphtho[1,2-c]furan-1,3-dione 2.72 2.85 4.78 

20 
Cyclopenta[cd]pyrene 2.80 2.83 1.07 

21 
7H-Benzo[de]anthracen-7-one 2.96 2.94 0.68 

22 
Perylened 3.25 3.18 2.15 

23 
Indeno[1,2,3-cd]pyrened 4.43 4.13 6.77 

24 
Benzo[ghi]perylened 5.08 4.77 6.10 

 Prediction Set    

25 
Benzofuran, 2-methyl 1.50 1.48 1.33 

26 
Benzonitrile, 2-methyl 1.87 1.97 5.35 

27 
Benzothiazole 1.91 1.93 1.05 

28 
Indandione 1.98 2.06 4.04 

29 
Anthracened 2.19 2.14 2.28 

30 
Pyrene, 1-methyl 2.44 2.60 6.56 

31 
Chrysene, 1-methyl 2.64 2.63 0.38 

32 
Benzo[a]pyrened 3.13 3.01 3.83 

 Test Set    

33 
Toluene 1.02 1.01 0.98 

34 
Phenol, 4-methyl 1.54 1.63 5.84 

35 
2(5H)Furanone, 3-methyl 1.83 1.87 2.19 

36 
Indanone 1.91 2.05 7.33 

37 
2,5-Furandicarboxaldehyde 1.99 1.94 2.51 

38 
Isoquinoline 2.11 2.25 6.64 

39 
Cyclopenta[def]phenanthrenone 2.48 2.27 8.47 

40 
Chrysened 2.68 2.82 5.22 
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Genetic algorithm 

    A detailed description of the genetic 

algorithm (GA) can be found in the literature 

[20-22]. Genetic algorithm would be our 

simulated methods based on ideas from 

Darwin’s theory of natural selection and 

evolution (the struggle for life). In GA, a 

chromosome (or an individual) which can be 

defined as an enciphered entity of a candidate 

solution, is expressed in a set of variables. GA 

consist of the following basic steps: (1) A 

chromosome is represented by a binary bit 

string and then an initial population of 

chromosomes is created in a random way; (2) 

A value for the fitness function of each 

chromosome is evaluated; (3) Based on the 

values of the fitness functions, the 

chromosomes of the next generation are 

produced by selection, crossover and mutation 

operations. The fitness function was proposed 

by Depczynski et al. [23].   

Linear model 

 

Partial least squares 

PLS is a linear multivariate method for 

relating the process variables X  with 

responsesY . PLS can analyze data with 

strongly collinear, noisy, and numerous 

variables in both X and Y  [24]. PLS reduces 

the dimension of the predictor variables by 

extracting factors or latent variables that are 

correlated with Y while capturing a large 

amount of the variations in X . This means that 

PLS maximizes the covariance between 

matrices X and Y . In PLS,  the scaled 

matrices X  and Y are decomposed into score 

vectors ( t  and u ), loading vectors ( p and q ), 

and residual error matrices ( E  and F ): 

 




a

i

T
ii EptX

1
 




a

i

T
ii FquY

1
                          (1) 

 

Where a  is the number of latent 

variables,  in an inner relation,  the score 

vector t  is linearly regressed against the score 

vector u.  

Ui = biti+hi                                                         (2) 

 

Where b is regression coefficient, that is 

determined by minimizing the residual h , It is 

crucial to determine the optimal number of 

latent variables and cross validation which is a 

practical and reliable way to test the predictive 

significance of each PLS component. There 

are several algorithms to calculate the PLS 

model parameters. In this work, the NIPALS 

algorithm was used with the exchange of 

scores [25]. 
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Nonlinear models 

 

Kernel partial least squares 

 

    The KPLS method is based on the 

mapping of the original input data into a high 

dimensional feature space   where a linear 

PLS model is created. By nonlinear mapping 

 )(: xx n , a KPLS algorithm can 

be derived from a sequence of NIPALS steps 

and has the following formulation [26]: 

1. Initialize score vector w  as equal to any 

column of Y. 

2. Calculate scores wu T and normalize u 

to ||u|| = 1, where   is a matrix of regressors. 

3. Regress columns of Y on u: c = YTu, where 

c is a weight vector. 

4. Calculate a new score vector w for Y: w = 

Yc and then normalize w to ||w||=1. 

5. Repeat steps 2–4 until convergence of w. 

6. Deflate T  and Y matrices: 

 
TTTT uuuu ))((          (3) 

 

Y = Y − uuTY                                      (4) 

 

7. Go to step 1 to calculate the next latent vari-

able. 

 

Without explicitly mapping into the high-

dimensional feature space, a kernel function 

can be used to compute the dot products as 

follows: 

)()(),( j
T

iji xxxxk                      (5) 

                                                   
T represents the (n×n) kernel Gram 

matrix K of the cross dot products between all  

mapped input data points nixi ,...,1),(  . The 

deflation of the KT  matrix after 

extraction of the u components is given by: 

K = (I − uuT)K(I − uuT)                     (6) 

 

Where “I” is an m-dimensional identity 

matrix, taking into account the normalized 

scores “u” of the prediction of KPLS model on 

training data, 


Y  is defined as: 

YUUYUKWUKWY TTT  


1)(         (7)  

                               

For predictions on new observation 

data


tY , the regression can be written as: 

YUKWUWKY TT
tt

1)( 


                    (8)   

 

Where Kt is the test matrix whose 

elements are Kij =K(xi, xj), xi and xj present the 

test and training data points, respectively. 

Artificial neural network 

 

An artificial neural network (ANN) with a 

layered structure is a mathematical system that 

stimulates the biological neural network which 

consists of computing units named neurons 

and connections between neurons named 
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synapses [27,29]. Input or independent 

variables are considered as neurons of input 

layer, while dependent or output variables are 

considered as output neurons. Synapses 

connect input neurons to hidden neurons and 

hidden neurons to output neurons. The 

strength of the synapse from neuron i  to 

neuron j  is determined by the means of a 

weight, Wij. In addition, each neuron j from 

the hidden layer, and eventually the output 

neuron, are associated with a real value bj, 

named the neuron’s bias and with a nonlinear 

function, named the transfer or activation 

function. Because the artificial neural 

networks (ANNs) are not restricted to linear 

correlations, they can be used for nonlinear 

phenomena or curved manifolds [27]. Back 

propagation neural networks (BNNs) are most 

often used in analytical applications [28]. The 

back propagation network receives a set of 

inputs, which is multiplied by each node and 

then a nonlinear transfer function is applied. 

The goal of training the network is to change 

the weight between the layers in a direction to 

minimize the output errors. The changes in 

values of weights can be obtained using Eq. 

(9): 

1,,  nijnnij WFW                           (9) 

Where ijW is the change in the weight 

factor for each network node,  is the 

momentum factor, and F is a weight update 

function, which indicates how weights are 

changed during the learning process. There is 

no single best weight update function which 

can be applied to all nonlinear optimizations. 

One needs to choose a weight update function 

based on the characteristics of the problem and 

the data set of interest. Various types of 

algorithms have been found to be effective for 

most practical purposes such as Levenberg-

Marquardt (L-M) algorithm. 

Levenberg -Marquardt algorithm 

While basic back propagation is the 

steepest descent algorithm, the Levenberg-

Marquardt algorithm [30] is an alternative to 

the conjugate methods for second derivative 

optimization. In this algorithm, the update 

function, Fn, can be calculated using Eqs. (10) 

and (11): 

00 gF                                              (10) 

 

eJIJJF TT
n  1][              (11) 

 

    Where J is the Jacobian matrix,   is a con-

stant, I is an identity matrix, and e is an error 

function [31]. 

 

Software and programs 

A Pentium IV personal computer (CPU at 

3.06 GHz) with windows XP operational 

system was used. Geometry optimization was 
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performed by HyperChem (Version 7.0 

Hypercube, Inc.); Dragon software was used to 

calculate the descriptors. MINITAB software 

(version 14, MINITAB) was used for the 

simple PLS analysis. Cross validation, GA-

PLS, GA-KPLS, L-M ANN and other 

calculation were performed in the MATLAB 

(Version 7, Mathworks, Inc.) environment. 

Results and discussion 

Linear model  

Results of the GA-PLS model 

To reduce the original pool of descriptors 

to an appropriate size, the objective descriptor 

reduction was performed using various 

criteria. Reducing the pool of descriptors 

eliminates those descriptors which contribute 

either no information or whose information 

content is redundant with other descriptors 

present in the pool. After this process, 1091 

descriptors were remained. These descriptors 

were employed to generate the models with 

the GA-PLS and GA-KPLS program. The best 

model is selected on the basis of the highest 

multiple correlation coefficient leave-group-

out cross validation (LGO-CV) (Q2), the least 

root mean squares error (RMSE) and relative 

error (RE) of prediction and simplicity of the 

model. These parameters are probably the 

most popular measures of how well a model 

fits the data. The best GA-PLS model contains 

18 selected descriptors in 11 latent variables 

space. For this, in general, the number of 

components (latent variables) is less than the 

number of independent variables in PLS 

analysis. The Q2, mean RE and RMSE for 

training and test sets were (0.85, 0.69), (6.73, 

14.07) and (0.27, 0.44), respectively. The PLS 

model uses higher number of descriptors that 

allow the model to extract better structural 

information from descriptors to result in a 

lower prediction error.  

Nonlinear models  

 

Results of the GA-KPLS model 

The leave-group-out cross validation 

(LGO-CV) has been performed. In this paper, 

a radial basis kernel function, k(x,y)= exp(||x-

y||2/c), was selected as the kernel function with 

2rmc  . Where r is a constant that can be 

determined by considering the process to be 

predicted (here r set to be 1), m is the 

dimension of the input space and 2  is the 

variance of the data [32]. It means that the 

value of c depends on the system under the 

study. The 9 descriptors in 5 latent variables 

space chosen by GA-KPLS feature selection 

methods were contained. The Q2, mean RE 

and RMSE for training and test sets were 

(0.88, 0.79), (3.89, 8.64) and (0.19, 0.31), 

respectively. 
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The RMSE values of the GA-KPLS 

model for the training and test sets were much 

lower than GA-PLS model. From these results, 

it can be noticed that the GA-KPLS model 

gives the highest Q2 values, so this model 

provides the most satisfactory results, 

compared with the results obtained from the 

GA-PLS model. The GA-PLS linear model 

has good statistical quality with low prediction 

error, while the corresponding errors obtained 

by the GA-KPLS model are lower. 

Consequently, the GA-KPLS approach 

currently constitutes the most accurate method 

for predicting the retention of these 

components than that of the GA-PLS method. 

This suggests that GA-KPLS hold promise for 

applications in choosing variables for L-M 

ANN systems. This result indicates that the RT 

of nanoparticle molecules possesses some 

nonlinear characteristics.                                              

Results of the L-M ANN model 

With the aim of improving the predictive 

performance of nonlinear QSRR model, L-M 

ANN modeling was performed. Descriptors of 

GA-KPLS model were selected as inputs in L-

M ANN model. The network architecture 

consisted of nine neurons in the input layer 

corresponding to the five mentioned 

descriptors. The output layer had one neuron 

that predicts the RT. The number of neurons in 

the hidden layer is unknown and needs to be 

optimized. In addition to the number of 

neurons in the hidden layer, the learning rate, 

the momentum and the number of iterations 

also should be optimized. In this work, the 

number of neurons in the hidden layer and 

other parameters except the number of 

iterations were simultaneously optimized. A 

MATLAB program was written to change the 

number of neurons in the hidden layer from 2 

to 7, the learning rate from 0.001 to 0.1 with a 

step of 0.001 and the momentum from 0.1 to 

0.99 with a step of 0.01. The root mean square 

errors for training set was calculated for all of 

the possible combination of values for the 

mentioned variables in leave-group-out cross 

validation (LGO-CV). It was realized that the 

RMSE for the training set is minimum when 

two neurons were selected in the hidden layer 

and the learning rate and the momentum 

values were 0.6 and 0.4, respectively. Finally, 

the number of iterations was optimized with 

the optimum values for the variables. It was 

realized that after 18 iterations, the RMSE for 

prediction set were minimum. The values of 

experimental, calculated and percent relative 

error are shown in Table 1. The Q2, RE and 

RMSE for calibration, prediction and test sets 

were (0.98, 0.97, 0.93), (3.24, 3.13, 4.89) and 

(0.10, 0.89, 0.12), respectively. For the 

constructed model, three general statistical 
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parameters were selected to evaluate the 

prediction ability of the model for the RT. The 

statistical parameters Q2, RE and RMSE were 

obtained for proposed models. Each of the 

statistical parameters mentioned above were 

used for assessing the statistical significance of 

the QSRR model. Inspection of the results 

reveals a higher Q2 and other parameter values 

for the training and test sets compared with 

their counterparts for GA-KPLS and GA-PLS. 

Plots of predicted RT versus experimental RT 

values by L-M ANN are shown in Fig. 1a, 1b. 

Obviously, there is a close agreement between 

the experimental and predicted RT, moreover, 

the data represent a very low scattering around 

a straight line with respective slope and 

intercept close to one and zero. This clearly 

shows the strength of L-M ANN as a nonlinear 

feature selection method. The key strength of 

L-M ANN is their ability to allow the flexible 

mapping of the selected features by 

manipulating their functional dependence 

implicitly. Neural network handles both linear 

and nonlinear relationship without adding 

complexity to the model. This capacity offsets 

the large computing time required and 

complexity of L-M ANN model with respect 

to other models. 
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Figure 1. Plot of predicted log Ks obtained by L-M ANN against the experimental values (a) training set of mole-

cules and (b) for test set 

Model validation 

 

Validation is a crucial aspect of any 

QSPR/QSRR modeling [33]. The 

accuracy of proposed models was 

illustrated using the evaluation techniques 

such as leave-group-out cross validation 

(LGO-CV) procedure and validation 

through an external test set. 

Cross validation technique 

Cross validation is a popular 

technique used to explore the reliability of 

statistical models. Based on this 

technique, a number of modified data sets 
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are created by deleting in each case one or 

a small group (leave-some-out) of objects. 

For each data set, an input–output model 

is developed, based on the utilized 

modeling technique. Each model is 

evaluated by measuring its accuracy in 

predicting the responses of the remaining 

data (the ones or group data that have not 

been utilized in the development of the 

model) [34]. In particular, the LGO 

procedure was utilized in this study. A 

QSRR model was then constructed on the 

basis of this reduced data set and 

subsequently used to predict the removed 

data. This procedure was repeated until a 

complete set of prediction was obtained. 

The statistical significance of the screened 

model was judged by the correlation 

coefficient (Q2). The predictive ability 

was evaluated by the cross validation 

coefficient (Q2 or R2
cv) which is based on 

the prediction error sum of squares 

(PRESS) and was calculated by following 

equation: 


















n

i
i

n

i
ii

cv

yy

yy

QR

1

2

1

2

22

)(

)(

1               (12) 

 

  Where iy , 
iy

 
and y  were 

respectively the experimental, predicted, 

and mean RT values of the samples,The 

accuracy of cross validation results is 

extensively accepted in the literature 

considering the Q2 value. In this sense, a 

high value of the statistical characteristic 

(Q2 > 0.5) is considered as proof of the 

high predictive ability of the model [35]. 

Although this assumption  is in many 

cases  incorrect, it is worth mentioning 

that the lack of the correlation between the 

high Q2 and the high predictive ability of 

QSPR/QSRR models has been established 

and corroborated recently [33]. Thus, the 

high value of Q2 appears to be necessary 

but not sufficient condition for the models 

to have a high predictive power. These 

authors stated that an external set is 

necessary. In our next step, further 

analysis was also followed for chemical 

property of the new set of compounds 

using the developed QSRR model. 

Validation through the external test set 

Validating QSRR with external data 

(i.e. data not used in the model 

development) is the best method of 

validation. However, the availability of an 

independent external test set of several 
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compounds is rare in QSRR. Thus, the 

predictive ability of a QSRR model with 

the selected descriptors was further 

explored by dividing the full data set. The 

predictive power of the models which was 

developed on the selected training set is 

estimated on the predicted values of test 

set chemicals. The data set was randomly 

divided into three groups including 

calibration and prediction sets (training 

set) and test set, which consists of 24, 8 

and 8 molecules, respectively. The 

calibration set was used for model 

generation. The applied prediction set 

deals with overfitting of the network, 

whereas test set in which its molecules 

have no role in model building was used 

for the evaluation of the predictive ability 

of the models for external set. The result 

clearly displays a significant improvement 

of the QSRR model consequent to non-

linear statistical treatment and a 

substantial independence of model 

prediction from the structure of the test 

molecule. In the above analysis, the 

descriptive power of a given model has 

been measured by its ability to predict 

partition of unknown drugs. For instance, 

as it was done for the prediction ability, it 

can be observed in Fig. 1 that scattering of 

data which points from the ideal trend in 

test set is poor. 

Conclusion  

In the present study, a linear method 

(GA-PLS) and two nonlinear methods 

(GA-KPLS and L-M ANN) were used to 

construct a quantitative relation between 

the retention of nanoparticles in roadside 

atmosphere and their calculated 

descriptors. The most important selected 

molecular descriptors represent the 

molecular properties, constitutional and 

quantum chemical descriptors that are 

known to be important in the retention 

mechanism of atmospheric molecules. The 

results obtained by L-M ANN were 

compared with the results obtained by 

other models. The results demonstrated 

that L-M ANN was more powerful in the 

retention prediction of these nanoparticle 

compounds than GA-PLS and GA-KPLS. 

A suitable model with high statistical 

quality and low prediction errors was 

eventually derived. It was easy to notice 

that there was a good prospect for the L-M 

ANN application in the QSRR modeling. 
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