Document Type : Original Research Article

Authors

1 Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran

2 Bu-Ali Sina University

3 Razi University

Abstract

Kinetic spectrophotometric second order data based on the reaction of 1,2-naphthoquinone-4-sulphonate (NQS) coupled with multivariate curve resolution-alternating least squares (MCR-ALS) has been proposed for simultaneous determination of ethylamine, propylamine and butylamine. Using second-order advantage, MCR-ALS methodology can solve problems of quantitation of analyte in the presence of unknown and uncalibrated interferences. Ethylamine, propylamine and butylamine react differentially with NQS at pH 9.5. Therefore, determination of these amines has been carried out due to the difference between their reaction rates. Quantitative determination of each amine in the mixture is performed using a synthetic solution as standard containing only the amine of interest. The MCR-ALS results are evaluated by the residuals and parameters such as lack of fit. The quantitative determination of these amines in different synthetic mixtures and some real samples such as river water, well water, tap water and soil has been performed and the results have been found to have good recoveries.

Graphical Abstract

Multivariate curve resolution-alternating least squares applied to kinetic spectrophotometric data for the determination of mixtures of aliphatic amines

Keywords

Main Subjects

[1] M. Windholz, S. Budavari, L.Y.
Stroumtsos, M.N. Fertig, “The Merck Index”, Merck &co, New Jersey, 1976.
[2] F. Sacher, S. Lenz, H. J. Brauch, J. Chromatogr. A,  1997, 764, 85- 93.
[3] Y. Moliner Martinez, C. MolinsLegua, P. Campı́nsFalcó, Talanta, 2004, 62, 373-382.   
[4] S. Meseguer Lloret, C. MolinsLegua, J. Verdú Andrés, P. Campı́nsFalcó, J. Chromatogr. A, 2004, 1035, 75-82.
[5] P.F. Gao, Z.X. Zhang, X.F. Guo, H. Wang, H.S. Zhang, Talanta , 2011, 84, 1093-1098.
[6] J.S. Li, H. Wang, L. W. Cao, H. S Zhang, Talanta, 2006, 69, 1190-1199.
[7] M. Kaykhaii, S. Nazari, M. Chamsaz, Talanta, 2005, 65, 223-228.
[8] A. Terashi, Y. Hanada, A. Kido, R. Shinohara, J. Chromatogr. A, 1990, 503, 369-375.
[9] C. Deng, N. Li, L. Wang, X. Zhang, J. Chromatogr. A, 2006, 1131, 45-50.
[10] I.A. Darwish, H.H. Abdine, S.M. Amer, L.I. Al-Rayes, Spectrochim. Acta A, 2009, 72, 897-902.
[11] M. Hasani, L. Yaghoubi, H. Abdollahi,  Anal. Biochem., 2007, 365,74-81.
[12] Y. Ni, C. Huang, S. Kokot,  Anal. Chim. Acta , 2007, 599, 209-218.
[13] Y. Ni, W. Xiao, S. Kokot,  J. Hazard. Mater., 2009, 168, 1239-1245.
[14] M. Shahpar, S. Esmaeilpoor, Chem. Method, 2017, 1, 98-120.
[15] X.H. Zhang, H.L. Wu, J.Y. Wang, Y. Chen, Y.J. Yu, C.C. Nie, C. Kang, D.Z. Tu, R.Q. Yu,  J. Pharm. Anal., 2012,  2, 241-248.
[16]  A.C. Olivieri, Anal. Chem., 2008, 80, 5713-5720.
[17] R.Tauler, Chemometr. Intell. Lab. Syst., 1995, 30,133-146.
[18]  M.J. Culzonin, H.C. Goicoechea ,  G.A. Ibanez, V.A. Lozano, N.R. Marsili, A.C. Olivieri, A.P. Pagani, Anal. Chim. Acta, 2008, 614, 46-57.
[19] A. Naseri, B. Ghasemzadeh, K. Asadpour-Zeynali1, J IRAN CHEM SOC, 2016, 13, 679–687.
[20] A. Naseri, M. Bahram, M. Mabhooti, J. Braz. Chem. Soc. 2011, 22, 2206-2215.
[21] M. Shariati-Rad, M. Irandoust, S. Mohamadi, Food Anal. Methods, 2017, 10, 694-703.
[22] S.F. Li, H.L. Wu,A.L. Xia, S.H. Zhu, J.F. Nie, Y.J. Yu, Anal. Sci., 2009, 25, 1231-1236.
[23] G. Ahmadi, H. Abdollahi,Chemometr. Intell. Lab. Syst., 2013, 120, 59-70.
[24]J. Saurina, S. Hernández-Cassou, Analyst, 1999, 124, 745-749.
[25] H.Y. Wang, L.X. Xu, Y. Xiao, J. Han, Spectrochim. Acta A, 2004, 60, 2933-2939.
[26] A.A. Elbashir, A.A. Ahmed, Sh.M. Ali Ahmed, H.Y. Aboul-Enein, Appl. Spectrosc. Rev., 2012, 47, 219-232.
[27] S.M. Ali Ahmed, A.A. Elbashir, H.Y. Aboul-Enein, Arab J Chem., 2015, 8, 233–239.
[28] A. de Juan, S.C. Rutan, R. Tauler, D.L. Massart,  Chemometr. Intell. Lab. Syst., 1998, 40, 19–32.
[29] A. De Juan, M. Maeder, M. Martínez, R. Tauler, Anal. Chim. Acta, 2001, 442, 337-350.
[30] M. Maeder, Anal. Chem., 1987, 59, 527-530.
[31] W. Windig, D.A. Stephenson, Anal. Chem., 1992, 64, 2735-2742.
[32] F.C. Sánchez, J. Toft, B. Van den Bogaert, D. L. Massart, Anal. Chem., 1996, 68, 79-85.
[33] F.C. Sánchez, B.G. M. Vandeginste, T.M. Hancewicz, D.L. Massart, Anal. Chem., 1997, 69, 1477-1484.
[34] G.H. Golub, C.F. Van Loan, Matrix Computation, Johns Hopkins University Press, third edition, 1989.
[35] C.B. Zachariassen, J. Larsen, F. Van den Berg, R. Bro, A. De Juan, R. Tauler, Chemometr. Intell. Lab. Syst., 2006, 83, 13–25.
[36] T. Azzouz, R. Tauler, Talanta, 2008, 74, 1201–1210.
[37] R. Tauler, A. De Juan, Multivariate curve resolution home page, http://www.ub.es/gesq/mcr/mcr.htm.
[38] Y. Hashimoto, M. Endo, K. Tomiaga, S. Inuzuka, M. Moriyasu, Microchim. Acta, 1978, 7, 493-504.
[39] R. Tauler, D. Barceló, Trends Anal. Chem., 1993, 12, 319-327.
[40] J. M. Amigo, A. de Juan, J. Coello, S. Maspoch, Anal. Chim. Acta, 2006, 567, 236-244.