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Abstract 
Kinetic spectrophotometric second order data based on the reaction of 1,2-

naphthoquinone-4-sulphonate (NQS) coupled with multivariate curve resolution-

alternating least squares (MCR-ALS) has been proposed for simultaneous 

determination of ethylamine, propylamine and butylamine. Using second-order 

advantage, MCR-ALS methodology can solve problems of quantitation of analyte in 

the presence of unknown and uncalibrated interferences. Ethylamine, propylamine 

and butylamine differentially react with NQS at pH 9.5. Therefore, determination of 

these amines has been carried out due to the difference between their reaction rates. 

Quantitative determination of each amine in the mixture has been performed using a 

synthetic standard solution containing only the amine of interest. The quantitative 

determination of these amines in different synthetic mixtures and some real samples 

such as river water, well water, tap water and soil has been performed and the results 

have been found to have good recoveries.  
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Introduction 

Aliphatic amines are of industrial 

interest as important precursors in the 

synthesis of dyes, pharmaceuticals, 

stabilizers, emulsifiers and corrosion 

inhibitors [1]. Due to their commercial 

applications and widespread uses as 

intermediates in the chemical and 

pharmaceutical industries, they are 

widely distributed in the nature. In 

addition to their industrial application, 

aliphatic amines may occur as 

biodegradation products of proteins and 

amino acids, or other nitrogen-

containing compounds. Most of 

alkylamines have toxic characteristics 

and are dangerous to health especially 

when react with nitrite, in order to form 

carcinogenic nitrosamines [2]. 

Therefore, there is a growing need in 

the determination of aliphatic amines in 

various types of samples. 

High-performance liquid 

chromatography (HPLC) [3-6], and gas 

chromatography (GC) coupled with 

different detectors [2,7-9] have been 

recognized as the techniques most 

widely used for the determination of 

Original Research Article 

http://icc.journals.pnu.ac.ir/


 

 

M. Hasani et al. / Iranian Chemical Communication 7 (2019) 1-14 

 

Page | 2  

 

aliphatic amines in environmental 

samples. But in these techniques it is 

crucial to convert amines to detectable 

derivatives. Derivatization requires 

efficient and effective reagents and 

mild conditions to obtain stable 

derivatives with minimum by-products. 

Moreover, chromatographic methods 

usually require expensive 

instrumentation. So, other simpler 

methods are of great interest.  

Spectrophotometry is an easy and 

convenient analytical technique that can 

be used for the determination of a 

number of different compounds [10-

13]. Therefore, spectrophotometric 

method can be considered as a good 

alternative to the separation techniques. 

However, the lack of selectivity of UV-

Vis absorption measurements limits its 

application in complicated systems with 

overlapped absorption bands. So, 

multicomponent analysis with UV-Vis 

spectrophotometers continues to be a 

difficult problem where there is no 

spectral differences [11]. In such cases, 

using chemometric methods in 

resolving the overlapped spectra into 

their individual components will help. 

Coupling the kinetics of a reaction 

with chemometric approaches provides 

the necessary data for analytical 

applications. Therefore, in the last 

decade simultaneous determination of 

compounds with similar 

structures/properties has been achieved 

using differential kinetic methods and 

chemometric treatments [12-14]. For 

quantitative and qualitative 

measurement purposes, methods with 

second order advantages can 

successfully resolve [15,16] the spectral 

profiles and the relative concentrations 

of each component in the system. A 

very appropriate analysis method is 

multivariate curve resolution based on 

alternating least squares (MCR-ALS) 

[17]. MCR-ALS, as a soft-modelling 

methodology, is able to extract the 

information of the evolving systems 

without using the underlying kinetic 

model. The time evolution of spectra 

for a reacting system constitutes second 

order instrumental data which can be 

subjected to MCR-ALS that permits 

analyte quantitation in samples 

containing unexpected components, i.e. 

components not included in the 

calibration set. There are some reports 

on using kinetic spectroscopic data to 

achieve the second order advantage for 

quantitative purposes [18-22].   

The main limitation of all MCR 

methods is the rotational ambiguity 

which is undesirable. This can lead to 

finding no unique solution for the 

concentration and spectral profiles of 

the system under study. However, by 

applying different constraints such as 

nonnegativity of the concentration and 

absorption spectra, unimodality of 

concentration profiles and other 

constraints the unique solution may be 

achived. This subject has been studied 

by Abdollahi et.al in detail [23].  

It has been reported that 1,2-

naphthoquinone-4-sulphonate (NQS) 

reacts with amines and their derivatives 

due to the fact that lone pairs of 

electron on nitrogen of amines can 

attack the electron deficient center in 

NQS [24], namely the No. 4 carbon 

atom. NQS is a very well-known 

spectrophotometric reagent due to its 

capability in reaction with both primary 

and secondary amines [10,25-27]. 

The objective of this paper is to 

propose a method for the analysis of 

mixtures of aliphatic amines based on a 

two-dimensional kinetic 

spectrophotometric method coupled to 

chemometric decomposition method of 

MCR-ALS to take the advantage of 

second order data. This method is based 

on the difference of the chemical 

reaction rate of these amines with NQS 
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in basic medium. In this approach 

neither the extraction nor the separation 

of the analyte from the background are 

needed, because the quantitative 

determination of the analyte of interest 

is not affected by the presence of 

unknown interferences in the samples. 

Multivariate curve resolution-

alternating least squares (MCR-ALS)  

MCR-ALS is an iterative soft-

modelling resolution method developed 

by Tauler and co-workers [17,28]. The 

aim of MCR-ALS is the optimal 

decomposition of a bilinear data matrix 

D with mixed information about a 

multicomponent system into the 

product of two small matrices, i.e. pure 

component spectra, ST, and the relative 

concentration profiles, C. This 

decomposition is the result of the 

validity of Beer–Lambert’s law for 

absorption measurements. Assuming 

the bilinearity of data matrix D, 

absorbance signal can be decomposed 

into the sum of individual 

contributions, each described by a 

concentration profile in the matrix C 

and by pure matrix spectra in matrix ST 

[29]. 

D(r×c)=C(r×n)S(n×c)
T +E(r×c)           (1) 

D is the original measurement and in 

kinetic processes contains as rows the r 

measured absorption spectra ordered as 

a function of the reaction time. The 

matrix C contains, as columns, the 

kinetic profiles of the n pure species 

involved in the process at r time points 

and ST contains n rows with the related 

pure spectra. E is the error-related 

matrix that provides the data variation 

not explained by the proposed n 

contributions (components). 

Decomposition of D is achieved by 

iterative least-squares minimization of 

E with the help of applying some 

constraints.   

Iterative MCR-ALS method needs 

a preliminary estimation of ST or C to 

start the ALS procedure. Different 

methods are used for this purpose like 

evolving factor analysis [30,31] or the 

determination of the purest variables 

[32,33]. These initial estimates are used 

to start the alternating least squares 

(ALS) constrained optimization 

through an iterative process. The 

algorithm proceeds in cycling steps in 

which C and ST are iteratively updated 

by solving alternatively the two 

following least-squares matrix 

equations, (Eqs. (2) and  (3)) to have a 

least square solution for Eq. (1) i.e.at 

each iterative cycle the C and ST 

matrices  that minimize the error in the 

description of the raw dataset is found 

 

ST=(C) +D       (2) 

C=D (ST)+        (3) 

Where (ST)+ and (C)+ are the 

pseudoinverses of the ST and C 

matrices, respectively [34]. The 

resolution was improved by applying 

several constraints during optimization. 

A figure of merit of the optimization 

procedure is the percent of lack of fit 

(% LOF). LOF is defined as the 

difference between the input data D and 

the data reproduced by the CST product 

obtained by MCR-ALS. This value is 

calculated according to the expression 

(4). 

%LOF =100 ((dij-dcalij)
2/dij

2)1/2       

(4) 

Where dcalij
 

and dij
 

refer to the 

calculated and the real absorbance data 

objects, respectively.  

Iteration continues until the relative 

difference in lack of fit between two 

consecutive iterations goes below a 

threshold value or when a preselected 

number of iteration is reached.  The 

percentage of lack of fit (% LOF) is 

considered as a measure of the fit 

quality [35,36]. 
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By comparing the area under the 

concentration profiles for the analyte in 

the standard and in the unknown 

sample, the quantification of analyte is 

possible (Equation 5). 

 

std

std

unk
unk C

A

A
C       (5) 

 

Here, unkC  and stdC  are the 

concentrations of the analyte in the 

unknown and standard samples, 

respectively; unkA  and stdA  are the areas 

below the concentration profiles in the 

unknown and in the standard samples, 

respectively. 

Experimental 

Apparatus and software 
UV-visible absorbance digitized spectra 

were collected on an Analytic Yena 

Specord 210 spectrophotometer, using 

a 1 cm quartz cell within the 

wavelength range 280-600 nm. The pH 

of the solutions was measured with a 

Metrohm 827 pH meter using a 

combined glass electrode. All 

calculations related to multivariate 

resolution with alternative least squares 

were performed using MATLAB 7.11 

environment utilizing a personal 

computer with windows 7 operating 

system. MCR-ALS software, freely 

available in the literature has been used 

[37]. 

Solution and reagents 

All chemicals were of analytical 

reagent grade and used without further 

purification. All aqueous solutions were 

prepared with distilled water. Stock 

solutions of ethylamine, propylamine 

(4.99×10-2 M, Merck) and of 

buthylamine (1.49×10-2 M, Merck) 

were prepared by dissolving the 

appropriate amount of each compound 

in water. A 3.69×10-3 M stock solution 

of 1,2-naphtoquinone-4-sulphonate 

(NQS) was prepared by dissolving 4.8 

mg of sodium salt (Merck) in water in a 

5 mL volumetric flask. This solution 

was prepared fresh for each experiment 

and was stored in the dark at room 

temperature. Working standard 

solutions were prepared by suitable 

dilution of the stock solutions as 

required.  Solutions with different pH 

have been prepared by mixing amines 

and NQS in the corresponding buffer 

solutions (i.e. acetate buffer for pH=5, 

phosphate buffer for pH=6-8, and 

carbonate buffer for pH=9-11).  In each 

case the concentration of buffer was 0.2 

M.  

Preparation of soil and water sample 

The analyzed samples were water 

samples collected from tap water, well 

water and river water of Hamedan as 

well as an agricultural soil sample. The 

water samples were filtered through a 

filter paper for removal of possible 

particulate contaminants before use. A 

2.0 g of soil sample were stirred in 10 

mL distilled water for 30 min at room 

temperature to extract soluble 

constituents. The resulting solution was 

centrifuged at 4000 rpm for 10 min, and 

filtered through a filter paper. Then, 1.0 

mL of this solution was added to a 5 

mL volumetric flask and diluted to the 

mark with distilled water. 

Procedure 

Here, 1.0 mL of stock NQS solution 

and 2.0 mL of the carbonate buffer 

solution (pH 9.5, 0.2 M) were 

transferred into a 5 mL volumetric 

flask. This solution was diluted to 

volume with water and mixed well. 

After mixing, 2.5 mL of the above 

solution was transferred to a 

spectrophotometric cell. The 

absorbance spectrum was recorded at 

280-600 nm with respect to the distilled 

water blank. Then 50 μl of ethylamine, 

propylamine, buthylamine or mixtures 
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of them in certain concentration was 

injected to the spectrophotometric cell 

and mixed well. Then immediately the 

spectrophotometer started to record the 

UV-Vis spectra every 30 s for 30 min, 

over the wavelength range of 280-600 

nm. For each sample, 60 spectra were 

sequentially recorded. The recorded 

spectra were digitized every 1 nm. 

Therefore, the absorbance-time data 

matrix was 60×321. Quantitative 

experiments were carried out using the 

synthetic mixtures given in Table 1. 

 

 

Table 1. Composition of the three standard solutions ([E],[P],[B]) and four analyzed mixtures 
 Concentration (M)   

Butylamine (B) Propylamine (P) Ethylamine (E)  

  7.35×10-5 [E] 

 7.35×10-5  [P] 

7.35×10-5   [B] 

 3.43×10-5 3.92×10-5 [EP] 

4.90×10-5  2.45×10-5 [EB] 

4.41×10-5 2.94×10-5  [PB] 

1.47×10-5 1.96×10-5 3.92×10-5 [EPB] 

 

Results and discussion 

Spectral features 

NQS is able to react in basic medium 

with both primary and secondary amino 

group to produce 

spectrophotometrically detectable 

derivatives [24]. According to the 

literature [27,38,39], the reaction 

equation is as Scheme 1.  

 

 

 
Scheme 1. 

 

Sample absorption spectra related 

to the mixture of NQS (7.5×10-4 M) and 

propylamine (7.5×10-3 M) as a function 

of time at room temperature are shown 

in Figure 1. Ethylamine, propylamine 

and butylamine have no absorption in 

the range of 280-600 nm. NQS has an 

absorbance maximum at 480 nm. But 

adding aliphatic amines to NQS gives 

rise to changes absorption in the visible 

range during a 30 min waiting period. 

The spectral shapes resulting from the 

individual reactions of these amines are 

very similar and the resulting 

derivatives show spectra with 

considerable overlapping which 

complicates the analysis of the spectral 

data set without a multivariate 

approach. Figure 2 shows this 

similarity. As seen from Figure 1, the 

spectra of propylamine and also two 

other amines (not shown) in reaction 

with NQS are time dependent. Amino 

group of these amines gives a 

substitution reaction with sulphonate 

group of NQS (Scheme 1) and yielded 
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new compounds that their absorption 

increase with elapse of time. The 

formation of these products was 

utilized in the development of a kinetic 

spectrophotometric method for the 

simultaneous determination of 

ethylamine, propylamine and 

butylamine. Preliminary investigations 

showed that the reaction rates for these 

three amines with NQS are different 

and the absorbance in the wavelength 

range studied changes differently with 

elapse of time for each analyte. Figure 

3 shows the variation of the absorbance 

versus time at 480 nm for ethyl-, 

propyl- and butylamine in the reaction 

with NQS under the conditions used in 

this work. 

Therefore, simultaneous 

determination of these analytes on the 

basis of their kinetic properties with 

NQS was carried out because of the 

difference between their reaction rates. 

MCR-ALS seems to be the appropriate 

method for this goal. 

 

 
 

Figure 1. The spectra of propylamine (7.35×10-5 M) in presence of NQS (7.5×10-4 M), at 

pH=9.5 during a 30-min time period 

 

 
Figure 2.   The spectra of a) NQS alone (7. 5×10-4M) b) ethylamine c) propylamine d) 

butylamine (all 7.35×10-5 M) in the presence of 7. 5×10-4 M NQS at pH= 9 after 30 min. 
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Figure 3. Absorbance-time plots for ethylamine (E), propylamine (P), and butylamine (B) 

(all 7.35×10-5 M) in the presence of NQS (7.5×10-4 M), pH=9.5 at λ=480nm 

 

Optimization of experimental 

conditions 

The optimum conditions for the 

development of the method were 

established by varying the parameters 

one at a time while keeping the others 

fixed and observing the effect produced 

on the absorbance of the colored 

product. These studies were to establish 

the experimental condition resulting in 

the greatest possible discrimination 

between the kinetic behavior of these 

amines and greatest value of signal. So, 

the effect of various parameters such as 

pH and concentration of NQS were 

studied at 480 nm. 

Influence of pH 

The effect of pH on the absorbance of 

the reaction between NQS and 

ethylamine, propylamine and 

butylamine was separately studied in 

the pH range of 5 to 10. For this 

purpose, changes in absorbance at 

different pHs at 480 nm over 30 min 

following the initiation of the reaction 

were monitored and ΔA (ΔAtotal-

ΔAblank) signal is plotted against pH 

(Figure 4). The signal ΔA(ΔAtotal-

ΔAblank) between 0.5 and 30 min was 

considered as analytical signal. At pH 

5-7, ΔA of the product is close to 0, 

indicating that under medium acidity, 

ethylamine, propylamine and 

butylamine have difficulty reacting 

with 1,2-naphtoquinone-4-solphonate. 

The possible reason may be that the 

amino group (-NH2) of these amines is 

protonized and turn into protonated 

amine salts (-NH3
+). So it loses 

nucleophilic capability for 4-sodium 

sulphonate of NQS and the nucleophilic 

substitution reaction cannot take place 

easily. At pH greater than 7, the 

absorbance of the solution increases 

with growth of pH. It may be that 

protonated amino groups (-NH3
+) 

turned into -NH2 and nucleophilic 

substitution reaction happens more 

easily. At pH 9.5 the ΔA reaches its 

maximum probably due to higher 

degree of nucleophilic substitution. But 

because of good nucleophilic ability of 

hydroxide ion the reaction may be 

hindered at higher pH. In order to keep 

the high sensibility for determination of 

ethyl-, propyl- and butylamine, pH 9.5 

(carbonate buffer) was selected for the 

optimal experimental conditions. 
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Figure 4. The effect of pH on the ΔA signals of ethylamine (E), propylamine (P), butylamine 

(B), (2.0×10-4 M) in the presence of NQS (7.5×10-4 M), pH=9.5 

 
 

Effect of concentration of NQS 

In order to find the optimal 

concentration of NQS, the effect of its 

concentration on the reaction of each 

amines was studied by carrying out the 

reaction at pH 9.5 and varying 

concentration of NQS in the range of 

1.87×10-4 to 1.13×10-3 M (four 

concentration level). At concentration 

lower than  3.75×10-4 M, the reaction 

rate is quite slow and at concentration 

higher than 1.13×10-3 M the absorbance 

at wavelengths below 380 nm was too 

high to allow a precise measurements 

(A>2). Therefore concentration of 

7.5×10-4 M was selected as a suitable 

concentration value. 

Data analysis 

The experimental data in this work 

consist of a series of kinetic runs 

monitored for different amine standards 

and mixtures. The recorded 

experimental data has been ordered in a 

data matrix D (r×c). In the rows of this 

data matrix are the spectra measured at 

different times and in the columns the 

absorbance measured values at different 

wavelengths. In our datasets, r is 60 and 

c is 321 in all cases. The total number 

spectra were 60 per run. Before starting 

the resolution process, an estimation of 

the possible number of contributions to 

the experimental response D must be 

obtained using singular value 

decomposition [34]. It is assumed that 

the singular values associated to the 

chemical components are much larger 

than singular values associated with 

other possible sources of variation such 

as experimental errors. 

Rank analysis of the data sets 

The singular values were calculated for 

all individual data sets. When the 

spectral data matrices of standards were 

analyzed by SVD, two factors were 

found to be significant in all cases. 

Considering the reported reaction 

between NQS and amines in the 

literature,[25,36,37] it is acceptable  

that the number of components present 

in the standard solutions are two, 

consisting of NQS  and NQS-amine 

final adduct  (Scheme 1). In fact the 

standard data are not rank deficient. In 

the case of binary and ternary mixtures 

the expected number of species was 3 

and 4, respectively i.e.  NQS and each 

amine-NQS final products. As seen 

from Table 2 the number of significant 

components estimated by SVD is the 
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same as the expected ones for binary 

mixtures. For ternary mixture the right 

number of significant components has 

been obtained after augmentation of the 

matrix of NQS with that of the ternary 

mixture. Table 2 shows the 9 first 

singular values obtained by SVD in 9 

different situations. In each case, the 

estimation of the singular values 

associated with noise is achieved using 

the second SVD of pure NQS at 

pH=9.5. This value is reported in Table 

2 and can be chosen as a threshold to 

estimate the rank i.e., the contributions 

with singular values higher than the 

threshold are considered significant. 
 

 

Table 2. The results of singular values decomposition of the individual and  

augmented data sets 

Factor NQS P E B PE PB BE BEP [NQS;BEP] 

1 

2 

3 

4 

5 

6 

7 

8 

9 
 

26.69 

0.50 

0.05 

0.01 

0.009 

0.008 

0.008 

0.008 

0.007 
 

164.19  

14.10  

0.49  

0.33  

0.29  

0.26  

0.21  

0.20  

0.19  
 

153.99 

10.66 

0.45 

0.27 

0.24 

0.22 

0.19 

0.15 

0.14 
 

152.73 

13.58 

0.51 

0.40 

0.25 

0.22 

0.19 

0.15 

0.13 
 

152.81 

13.19 

0.57 

0.45 

0.36 

0.26 

0.20 

0.18 

0.16 
 

162.27 

14.01 

0.92 

0.49 

0.39 

0.32 

0.25 

0.23 

0.19 
 

153.83 

11.66 

0.57 

0.35 

0.29 

0.21 

0.20 

0.16 

0.15 
 

145.49 

11.84 

0.59 

0.27 

0.24 

0.17 

0.14 

0.13 

0.12 
 

147.91 

11.85 

1.24 

0.59 

0.28 

0.19 

0.17 

0.14 

0.13 
 

Limita 0.50         

Rankb 1 2 2 2 3 3 3 3 4 

a Second singular value from the pure NQS data set 
b Estimated rank of the data matrix 

Quantification of binary and tertiary 

amine mixtures 

The MCR-ALS procedure as described 

above has been applied firstly to 

synthetic binary and ternary mixtures of 

amines for the resolution and 

quantification of the analyte of interest. 

Quantitative experiments were carried 

out using the synthetic mixtures given 

in Table 1. In the analysis of all the 

mixtures, one of the compounds is 

considered as analyte to be quantified 

while the others are considered as 

unknown interferences. For example in 

the mixture of ethylamine and 

propylamine, firstly ethylamine was the 

compound to be determined and 

propylamine was the unknown 

interferent. These matrices are arranged 

in a column-wise fashion. The data 

matrix of the unknown mixture was 

augmented with a data matrix of pure 

ethylamine of known concentration. 

Analysis was initiated with an 

initial estimate of the spectral profiles.  

The orthogonal projection approach 

(OPA) is an iterative procedure to find 

the pure or purest spectra (row) in a 

data matrix. A basic assumption of 

OPA is that the purest spectra are 

mutually more dissimilar than the 

corresponding mixture spectra. 

Therefore OPA uses a dissimilarity 

criterion to find the number of 

components and the corresponding 

purest spectra. These initial spectral 

estimates are used to start the 

alternating least squares (ALS) 
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constrained optimization through an 

iterative process. During this study, the 

non-negativity constraint in both 

concentration profiles and UV-Vis 

absorbances, unimodality constraint in 

concentration profiles and 

correspondence among the species [39] 

have been applied. Correspondence 

information is coded in the isp matrix 

that indicates with 1 and 0 the present 

and absent species, respectively. This 

matrix has a number of rows equal to 

the number of concentration 

submatrices (samples) in the analysis 

and a number of columns equal to the 

total number of components present in 

the system. This information is only 

available for the standards because the 

samples is supposed, to have an 

unknown composition [40]. Iterations 

continue until an optimal solution that 

fulfils the constraints postulated and the 

established convergence criteria. 

Sample spectral and concentration 

profiles obtained from running MCR-

ALS on the augmented matrices are 

shown in Figure 5.  The quantity of 

each amine in the original mixture 

sample, was performed by comparing 

the areas below the concentration 

profiles for the analyte in the standard 

and in the unknown sample. These 

values were compared with the true 

values and percentage errors (%PE) are 

obtained. The obtained values of %PE 

are satisfactory showing that the 

predictive capability of this method is 

good. It is also remarkable that the 

reconstruction of the original data set is 

also good, with low lack of fit values. 

The results obtained from the analysis 

of mixture of ethyl-, propyl-, and 

butylamine are given in Table 3. The 

errors of prediction are not the same for 

different mixtures and are influenced 

by the composition. The LOF is poorer 

for ternary mixtures and for binary 

mixtures of butyl and propylamines 

with more similarly kinetic behavior. 

But generally good quantification is 

achieved for all the amines in the 

mixture. 
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Figure 5. MCR-ALS resolved concentration (up) and spectral (down) profiles from the  

analysis of the augmented matrix [EB;E] 

 

 

Table 3. The results obtained by MCR-ALS on the binary and ternary mixtures of ethylamine 

(E), propylamine (P) and butylamine (B) 
%Recovery %PE R2 %LOF Found conc. M Real conc. M Amines  

99.48 -0.51 99.96 1.77 3.90×10-5 3.92×10-5 E Sample 1 

100 0 99.95 2.21 3.43×10-5 3.43×10-5 P  

99.95 -0.04 99.94 2.41 4.90 ×10-5 4.902×10-5 B Sample 2 

94.65 -5.34 99.96 2.15 2.32×10-5 2.451×10-5 E  

99.31 -0.40 99.96 2.11 2.92×10-5 2.94×10-5 P Sample 3 

101.36 1.36 99.94 3.87 4.47×10-5 4.41×10-5 B  

93.62 -6.37 99.89 18.7 3.67×10-5 3.92×10-5 E Sample 4 

102.55 2.25 99.81 20.2 2.01×10-5 1.96×10-5 P  

94.55 -5.44 99.87 18.5 1.39×10-5 1.47×10-5 B  

*
i i i

%PE =100(c -c )/c  

*
i

i

c
%Recovery =100×

c


 

Application 

To investigate the possibility of the 

presence of these aliphatic amines in 

some environmental samples and 

subsequent determination of them, 

samples were prepared and treated 

following the procedure described in 

the experimental section. Three water 

samples from different sources in 

Hamedan, Iran, (i.e. tap water, river 

water and well water), and an 

agricultural soil sample collected from 

Azandarian village in Hamedan, Iran, 

were used for analysis. The analysis 

was performed exactly as for the 

synthetic mixtures. The collected data 

were analyzed using ALS optimization 

of an augmented matrix obtained by 

joining the kinetic data matrices of 

samples with matrices of standards for 

ethyl-, propyl- and butylamine in order 

to determine these amines respectively. 

Based on the results of MCR-ALS, 

these aliphatic amines were not 
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detected in the real samples except for 

ethylamine in agricultural soil. 

Therefore, the real samples were spiked 

by different mixtures of amines. These 

new samples were reacted with NQS 

under optimal experimental conditions 

and the collected spectral data matrices 

were again augmented with matrices of 

standards of interested analytes. 

Application of the MCR-ALS method 

on the resulted matrices showed 

satisfactory results that have been 

collected in Table 4. 

 

 

Table 4. The results obtained by MCR-ALS on the spiked water and soil samples by ethyl-, 

propyl-, and buthylamine 
 Recover

y% 

  Found 

conc. M 

  Spiked 

conc. M 

  

B P E B P E B P E Sample 

0 102.33 98.98 0 3.51×10-5 3.96×10-5 0 3.43×10-5 3.92×10-5 Tap 

 Water 91.83 0 102.55 1.35×10-5 0 4.02×10-5 1.47×10-5 0 3.92×10-5 

0 

 

97.82 0 0 7.19×10-5 0 0 7.35×10-5 0 

92.51 102.04 0 1.36×10-5 2.00×10-5 0 1.47×10-5 1.96×10-5 0 Well 

Water 0 

 

103.20 104.84 0 3.54×10-5 4.11×10-5 0 3.43×10-5 3.92×10-5 

0 96.79 92.09 0 3.32×10-5 3.61×10-5 0 3.43×10-5 3.92×10-5 River 

Water 83.67 0 96.17 1.23×10-5 0 3.77×10-5 1.47×10-5 0 3.92×10-5 

0 88.92 93.12 0 0 3.05×10-5 0 3.43×10-5 3.92×10-5 soil 

0 90.82 88.41 0 0 1.78×10-5 0 1.96×10-5 3.92×10-5 
 
 

 

Conclusion 

The application of MCR-ALS has been 

proven to be a useful method for 

quantitative analysis of aliphatic amines 

in multicomponent mixture samples. As 

a method for quantitative analysis, the 

experimental approach is simple and 

fast and there is no sample pre-

treatment needed to suppress 

interferences. Advantages over 

separation techniques are that no clean-

up and removal of interferences are 

needed for the analysis. Compared with 

multivariate calibration methodologies, 

the number of standards required is 

much smaller (one or two standard 

samples are sufficient) and there is no 

need to incorporate the information on 

the matrix interferences (neither the 

identity nor the concentration range) in 

the standard solutions. Rank deficiency 

has proved to be of minor importance 

for quantitative purposes using the 

second-order multivariate curve 

resolution method.  
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