Document Type : Original Research Article

Authors

Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran

Abstract

In this paper, nickel oxide (NiO) nanoparticles have been prepared by solid state thermal decomposition of an acyclic nickel(II) complex (1,2-bis(2-formyl-3-methoxyphenyl)propane)nickel(II) chloride, [NiL]Cl2, in an electrical furnace at optimal temperature, 450 ºC for 3.5 h. The nickel(II) complex is obtained via solid state synthesis using nickel(II) chloride and tetradentate O4 acyclic ligand 1,2-bis(2-formyl-3-methoxyphenyl)propane. The structure and morphology of NiO nanoparticles are characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD and TEM analysis show that NiO nanoparticles have pure and cubic phase with the average size of 5-10 nm.

Graphical Abstract

Solid state synthesis of NiO nanoparticles from [(1,2-bis(2-formyl-3-methoxyphenyl)propane)nickel(II)] chloride

Keywords

Main Subjects

[1] S.H. Choi, Y.C. Kang, Appl. Mater. Interfaces., 2014, 6, 2312-2316.
[2] S.-I. Kim, J.-S. Lee, H.-J. Ahn, H.-K. Song, J.-H. Jang, Appl.Mater. Interfaces., 2013, 65, 1596-1603.
[3] J.H. Pan, Q. Huang, Z.Y. Koh, D. Neo, X.Z. Wang, Q. Wang, Appl. Mater. Interfaces., 2013, 5, 6292-6299.
[4] Y. Lv, K. Huang, W. Zhang, S. Ran, F. Chi, B. Yang, X. Liu, Cryst. Res.Technol., 2014, 49, 109-115.
[5] C.R. Bhattacharjee, D.D. Purkayastha, J.R. Chetia, J. Coord. Chem., 2011, 64, 4434-4442.
[6] W. Sun, L. Chen, S. Meng, Y. Wang, H. Li, Y. Han, N. Wei, Meter. Sci. Semiconduc. Process., 2014, 17, 129-133.
[7] Q.X. Xia, K.S. Hui, K.N. Hui, D.H. Wang, S.K. Lee, W. Zhou, Y.R. Cho, S.H. Kwon, Q.M. Wang, Y.G. Son, Mater. Lett., 2012, 69, 69-71.
[8] M. Khairy, S.A. El-Safty, Sens. Actuat. B: Chem., 2014, 193, 644-652.
[9] S. Mohseni Meybodi, S.A. Hosseini, M. Rezaee, S.K. Sadrnezhaad, D. Mohammadyani, Ultrason. Sonochem., 2012, 19, 841-845.
[10] P. Jeevanadam, V. Rang Rao Pulimi, Ind. J. Chem. A., 2012, 51, 586-590.
[11] A. Allagui, R. Wuthrich, Electrochim. Acta., 2011, 58, 12-18.
[12] S. Saravankumar, R. Saravanan, S. Sasikumar, Chem. Pap., 2014, 68, 788-797.
[13] B.S. Kwak, B.-H. Choi, M.J. Ji, S.-M. Park, M. Kang, J. Ind. Eng. Chem., 2012, 18, 11-15.
[14] M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, N. Yavarinia, Inorg. Chim. Acta., 2009, 362, 3691-3697.
[15] S. Farhadi, M. Kazem, F. Siadatnasab, Polyhedron., 2011, 30, 606-613.
[16] M. Salavati-Niasari, N. Mir, F. Davar, J. All. Compd., 2010, 493, 163-168.
[17] Z. Fereshteh, M. Salavati-Niasari, K. Saberyan, S.M. Hosseinpour-Mashkani, F. Tavakoi, J. Clust. Sci., 2012, 23, 577-583.
[18] H. Saeidian, F. Matloubi Moghaddam, A. Pourjavadi, S. Barzegar, R. Soleyman, A. Sohrabi, J. Braz. Chem. Soc., 2009, 20, 466-471.
[19] M. Alagiri, S. Ponnusamy, and C. Muthamizhchelvan, J. Mater. Sci. Mater. Electronics., 2012, 23, 728-732.
[20] A. Kazemi Babaheydari, M. Salavati-Niasari, A. Khansari, Particuology., 2012, 10, 759-764.
[21] S. Ilhan, H. Temel, A. Kilic, H. Tas, Trans. Met. Chem., 2007, 32, 1012-1017.
[22] R. Mehdizadeh, S. Sanati, L.A. Saghatforoush, Synth. React. Inorg., 2013, 43, 466-470.
[23] Z.M. Khoshhesab, M. Sarfaraz, Synth. React. Inorg., 2011, 40, 700-703.
[24] D.-J. Kang, S.-G. Kim, Korean J. Chem. Eng., 2009, 26, 1800-1805.
[25] J. Moghaddam, E. Hashemi, Korean J. Chem. Eng., 2014, 31, 503-508.
[26] A. Khansari, M. Enhessari, M. Salavti-Niasari, J. Clust. Sci., 2013, 24, 289-297.
[27] A.D. Khalaji, J. Clust. Sci., 2013, 24, 189-195.
[28] A.D. Khalaji, J. Clust. Sci., 2013, 24, 209-215.
[29] R. Mehdizadeh, S. Sanati, L.A. Saghatroroush, Synth. React. Inorg., 2013, 43, 466-470.
[30] A.D. Khalaji, K. Jafari, S. Maghsodlou Rad, Synth. React. Inorg., 2015, 45, 875-878.