Document Type : Original Research Article


1 Payame Noor university, Mazandaran

2 Department of Chemistry, Payame Noor University, Iran

3 Department of Chemistry, Damghan University, Iran

4 Department of Basic and Agricultural Sciences and Natural Resources University, Sari, Iran.


Novel nano-catalysts (Nano ZnO and Fe doped ZnO (Fe(0.1)Zn(0.99)O) synthesized by co-precipitation method in aqueous solution as new nanocatalysts and characterized by common techniques as FTIR, XRD, SEM and UVD. The size of particles obtained from XRD data is 27 and 16 nanometers for ZnO and Fresno respectively. Influences of doped Fe on ZnO catalytic properties in oxidation of Benzylic alcohols were studied. The oxidation carried out under mild and green conditions as: solvent free, at room temperature and with H2O2. The results show, FeZnO is better than ZnO as nanocatalyst in oxidation reaction. The rate, %conversion and %selectivity of reaction are improved in the presence of Fe atoms than ZnO only. The main product of oxidation reactions is Benzaldehyde and/or its derivatives.

Graphical Abstract

A comparative study of catalytic properties of ZnO and FeZnO nanoparticles on Oxidation of Benzylic alcohols: Influence of doped metal


Main Subjects

[1]  N. Salam, B. Banerjee, A.S. Roy, P. Mondal, S. Roy, A. Bhaumik, S.M. Islam; Applied Catalysis A: General, 2014, 477, 184-194.
[2] M. Esmaeilpour, J. Javidi, M. Zandi; Materials Research Bulletin, 2014, 55, 78-87.
[3] C.W. Lim, I.S. Lee; Nano Today, 2010, 5, 412-434.
[4] R.K. Sharma, Y. Monga, A. Puri; Catalysis Communications, 2013, 35, 110-114.
[5]  V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J. M. Basset; Chem. Rev., 2011, 111, 3036–3075.
[6]  F. Sadri, A. Ramazani, A. Massoudi, M. Khoobi, V. Azizkhani, R. Tarasi, L. Dolatyari, B. Min; Bull. Korean Chem. Soc., 2014, 35, 2029-2032.
[7]  F. Sadri, A. Ramazani, A. Massoudi, M. Khoobi, R. Tarasi, A. Shafiee, V. Azizkhani, L. Dolatyari, S. W. Joo; Green Chemistry Letters and Reviews, 2014, 7, 257-264.
[8] A.S. Reddy, C.S. Gopinath, S. Chilukuri; Journal of Catalysis, 2006, 243, 278–291.
[9] A.H. de Morais. Batista, F.S.O. Ramos, T.P. Braga, C.L. Lima, F.F. de Sousa, E. B.D. Barros, J.M. Filho, A.S. de Oliveira, J.R. de Sousa, A. Valentinia, A.C. Oliveira; Applied Catalysis A: General, 2010, 382, 148–157.
[10]  K. Sreekumar, T. Mathew, B.M. Devassy, R. Rajgopal, R. Vetrivel, B. S. Rao; Applied Catalysis A: General, 2001, 205, 11–18.
[11] A.S. Kulkarni, R.V. Jayaram; Applied Catalysis A: General, 2003, 252, 225–230.
[12] R. Sumathi, K. Johnson, B. Viswanathan, T. K. Varadarajan; Applied Catalysis A: General, 1998, 72, 15–22.
[13] M. Ilyas, M. Saeed; International Journal of Chemical Reactor Engineering, 2010, 8, 1–19.
[14]    K.S.R.C. Murthy, J. Ghose, Journal of Catalysis, 1994, 147, 171–176.
[15] J.L. Kroschwitz, 4th ed., Encyclopedia of Chemical Technology, vol. 4, Wiley- Interscience Publications, New York, 1992.
[16] T. Mallat, A. Baiker; Chem. Rev., 2004, 104, 3037–3058.
[17] M. Musawir, P.N. Davey, G. Kelly, I.V. Kozhevnikov; Chem. Commun., 2003, 12, 1414–1415.
[18]  K. Chritz, A. Sebek, M. Dittmar, A. Radnik, J. Bruckner, A. Bentrup, U. Pohl, M.M. Hugl, H. Magerlein;. J. Mol. Catal. A: Chem., 2006, 246, 85–99.
[19] D. Lenoir; Angew. Chem. Int. Ed., 2006, 45, 3206–3210.
[20]  Z. Zhang, J.B. Yi, J. Ding, L. M. Wong, H. L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, T. Wu; J. Phys. Chem., 2008, 112, 9579–9585.
[21] M. Gupta; Tetrahedron Lett., 2005, 46, 4957–4960.
[23]  P. Sharma, G. Darabdhara, T.M. Reddy, A. Borah, P. Bezboruah, P. Gogoi, N. Hussain, P. Sengupta, M.R. Das; Catal. Commun., 2013, 40, 139–144.
[24] P. Das, N. Aggarwal, N.R. Guha; Tetrahedron Lett., 2013, 54, 2924–2928.
[25] A.S. Burange. R.V. Jayaram, R. Shukla, A.K. Tyagi; Catal. Commun., 2013, 40, 27–31.
[26] V.R. Choudhary, D.K. Dumbre; App. Catal. A: General, 2010, 375, 252–257.
[27] S. Prakash. C. Charan, A.K. Singh; Applied Catalysis B: Environmental, 2013, 132, 62-69.
[28]  F. Shi, M.K. Tse, M.M. Pohl, J. Radnik, A. Brückner, S. Zhang, M. Beller; J. Mole. Catal. A: Chem., 2008, 292, 28–35.
[29] D. Habibi, A.R. Faraji, J.L.G. Fierro; J. Mole. Catal. A: Chem., 2013, 372, 90-99.
[30] D. Habibi, A.R. Faraji; App. Surf. Sci., 2013, 276, 487-496.
[31]J. Albadi, A. Alihoseinzadeh, A. Razeghi; Catal. Commun., 2014, 49, 1–5.
[32] R.V. Choudhary, K. De. Dumbre; Catal. Commun., 2011, 13, 82-86.
[33] R.V. Choudhary, K. De. Dumbre; Catal. Commun., 2009, 10, 1738-1742.
[34] D. Jung; solid state science, 2010, 12, 466-470.
[35] R. Kumar G. Kumar, A. Umar; Materials Letters, 2013, 97, 100–103.
[36] S. Sakthivel, H. Kisch; Angew. Chem. Int. Ed., 2003, 42, 4908-4912.
[37] S. Muthukumaran, R. Gopalakrishnan; Optic. Mat., 2012, 34, 1946–1953.
[38] K. Nakamoto; Infrared and Raman Spectra of Inorganic and Coordination Compounds, Parts A and B, John Wiley & Sons, New York, 1997.
[39]  A.J. Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan; J. Alloys Compd., 2011, 509, 5349– 5355.
[40] R.A. Nyquist, R. Kagel; Infrared spectra of inorganic compounds, p. 220. New York, London: Academic Press, Inc.; 1971.
[41] J. Luo. F. Peng, H. Yu, H. Wang; Chemical Engineering Journal, 2012, 204, 98–106.