Organic chemistry
Abdolkarim Zare; Jalal Sanjideh
Abstract
Two highly efficient protocols for the production of bis-coumarins under solvent-free conditions have been introduced. The reaction of 4-hydroxycoumarin (2 eq.) with arylaldehydes (1 eq.) using phthalimide-N-sulfonic acid (PhtSA) or isatin-N-sulfonic acid (IsSA), as solid-acid catalysts, afforded the ...
Read More
Two highly efficient protocols for the production of bis-coumarins under solvent-free conditions have been introduced. The reaction of 4-hydroxycoumarin (2 eq.) with arylaldehydes (1 eq.) using phthalimide-N-sulfonic acid (PhtSA) or isatin-N-sulfonic acid (IsSA), as solid-acid catalysts, afforded the mentioned compounds with good to excellent yields in short times.Briefly, we have introduced two new SO3H-bearing solid-acid catalysts, entitled phthalimide-N-sulfonic acid and isatin-N-sulfonic acid, for the preparation of bis-coumarins. The advantages of the presented protocols include: high effectuality and generality of the catalysts, high to excellent yields, short reaction times, simple synthesis of the catalysts from available and inexpensive starting materials, easy work-up and purification of the products, relatively mild conditions, application of solvent-free technique, and good compliance with the green chemistry protocols.
Organic chemistry
Seyyedeh Cobra Azimi; Kurosh Rad-Moghadam
Volume 3, Issue 4, pp. 283-387, Serial No. 9 , October 2015, , Pages 356-366
Abstract
A homogeneous ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate doped with LiCl ([BMIm]BF4-LiCl) was found as catalyst solvents for the synthesis of dicoumarols by the condensation of 4-hydroxycoumarin and aldehyde at 80 ˚C. In this field, several types of aromatic aldehyde, containing electron-withdrawing ...
Read More
A homogeneous ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate doped with LiCl ([BMIm]BF4-LiCl) was found as catalyst solvents for the synthesis of dicoumarols by the condensation of 4-hydroxycoumarin and aldehyde at 80 ˚C. In this field, several types of aromatic aldehyde, containing electron-withdrawing groups as well as electron-donating groups, were rapidly changed to the corresponding derivatives in good to excellent yields. Application of this new homogeneous catalyst system offered the advantages of short reaction times, solvent-free conditions, high yields, and easy work-up procedure compared to the conventional methods of the syntheses. The ionic liquid can be recovered for the subsequent reactions and reused without any loss of efficiency.