Foroozan Hasanpour; Masoumeh Taei; Masoud Fouladgar; Mehdi Salehi
Abstract
In this study, Nd-doped cobalt oxide (Nd-Co3O4) nanoparticles were prepared by a combustion synthesis procedure using Co(acac)3 complex. The nanoparticles were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy ...
Read More
In this study, Nd-doped cobalt oxide (Nd-Co3O4) nanoparticles were prepared by a combustion synthesis procedure using Co(acac)3 complex. The nanoparticles were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Then, the effect of Nd-Co3O4 on the electrocatalytic activity of gold nanodendrites (AuNDs) electrodeposited on a glassy carbon electrode (GCE) for ethanol oxidation was studied. The results showed that the Nd-Co3O4/AuNDs/GCE presents higher active surface area and current density (about 2 times) for the ethanol oxidation compared with the AuNDs/GCE. Cyclic voltammetry and chrono-potentiometry methods proved that the Nd-Co3O4/AuNDs/GCE is able to increase a long-term stability of electrode in alkaline ethanol fuel cell by providing OHads species at the surface of the catalysts. Consequently, the Nd-Co3O4/AuNDs/GCE, as an anodic electrode, reveals potent catalytic activity for ethanol oxidation in alkaline media.