Nanochemistry
Ahmad Nakhaei; Abolghasem Davoodnia; Sepideh Yadegarian
Abstract
Various antibacterial fluoroquinolone compounds were prepared by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using Zirconia Sulfuric Acid (ZrSA) nanoparticle, as a catalyst in refluxing ...
Read More
Various antibacterial fluoroquinolone compounds were prepared by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using Zirconia Sulfuric Acid (ZrSA) nanoparticle, as a catalyst in refluxing water. The results showed that ZrSA exhibited high catalytic activity towards the synthesis of fluoroquinolone derivatives, with the desired products being formed in high yields. Furthermore, the catalyst was recyclable and could be reused at least three times without any discernible loss in its catalytic activity. Overall, this new catalytic method for the synthesis of fluoroquinolone derivatives provides rapid access to the desired compounds in refluxing water following a simple work‐up procedure, and avoids the use of harmful organic solvents. This method therefore represents a significant improvement over the methods currently available for the synthesis of fluoroquinolone derivatives.
Nanochemistry
Ebrahim Teymoori; Abolghasem Davoodnia; Amir Khojastehnezhad; Nasrinsadat Hosseininasab
Abstract
In this research, a new magnetic nanocatalyst CuFe2O4@Si-Imid-PMo containing acidic ionic liquid based on imidazolium cation and phosphomolybdic acid anion immobilized on CuFe2O4@SiO2 magnetic nanoparticles was prepared and characterized using FT-IR, EDX, SEM, and VSM techniques. Then, the catalytic ...
Read More
In this research, a new magnetic nanocatalyst CuFe2O4@Si-Imid-PMo containing acidic ionic liquid based on imidazolium cation and phosphomolybdic acid anion immobilized on CuFe2O4@SiO2 magnetic nanoparticles was prepared and characterized using FT-IR, EDX, SEM, and VSM techniques. Then, the catalytic activity of CuFe2O4@Si-Imid-PMo was evaluated in the synthesis of 2,4,5-trisubstituted imidazoles. The results showed that the catalyst has high activity and the desired products were obtained in high yields within short reaction times. The best result was obtained at 120 °C in the presence of 0.02 g of the catalyst under solvent-free conditions. The catalyst was also readily recovered by a external magnetic and can be used for several times without substantial reduction in its catalytic activity.