[1] P.B. Fernandes, N. Shipkowitz, R.R. Bower, K.P. Jarvis, J. Weisz, D.T. Chu, J. Antimicrob. Chemother., 1986, 18, 693–701.
[2] G.E., Stein, E.J. Goldstein, Clin. Infect. Dis., 2006, 42, 1598–1607.
[3] Y.L. Chen, K.C. Fang, J.Y. Sheu, S.L. Hsu, C.C. Tzeng, J. Med. Chem., 2001, 44, 2374–2377.
[4] K. Fujimaki, T. Noumi, I. Saikawa, M. Inoue, S. Mitsuhashi, Antimicrob. Agents Chemother., 1988, 32, 827–833.
[5] E.M. Golet, A. Strehler, A.C. Alder, W. Giger, Anal. Chem., 2002, 74, 5455–5462.
[6] J.A. O'Donnell, S.P. Gelone, Infect. Dis. Clin. North Am., 2000, 14, 489–513.
[7] G.G. Zhanel, A. Walkty, L. Vercaigne, J.A. Karlowsky, J. Embil, A.S. Gin, D.J. Hoban, Can. J. Infect. Dis. Med. Microbiol., 1999, 10, 207–238.
[8] B. Llorente, F. Leclerc, R. Cedergren, Bioorg. Med. Chem., 1996, 4, 61–71.
[9] M.P. Wentland, G.Y. Lesher, M. Reuman, M.D. Gruett, B. Singh, S.C. Aldous, P. H. Dorff, J.B. Rake, S.A. Coughlin, J. Med. Chem., 1993, 36, 2801–2809.
[10] S.H. Elsea, N. Osheroff, J.L. Nitiss, J. Biol. Chem., 1992, 267, 13150–13153.
[11] Y.S. Oh, C.W. Lee, Y.H. Chung, S.J. Yoon, S.H. Cho, J. Heterocycl. Chem., 1998, 35, 541–550.
[12] J.A. Karlowsky, H.J. Adam, M. Desjardins, P.R. Lagacé-Wiens, D.J. Hoban, G.G. Zhanel, M.R. Baxter, K.A. Nichol, A. Walkty, C.A.R. Alliance, J. Antimicrob. Chemother., 2013, 68, i39–i46.
[13] T.D. Gootz, K.E. Brighty, Med. Res. Rev., 1996, 16, 433–486.
[14] A. Aubry, X.S. Pan, L.M. Fisher, V. Jarlier, E. Cambau, Antimicrob. Agents Chemother., 2004, 48, 1281–1288.
[15] L.A. Mitscher, Chem. Rev., 2005, 105, 559–592.
[16] D. Sriram, A. Aubry, P. Yogeeswari, L. Fisher, Bioorg. Med. Chem. Lett., 2006, 16, 2982–2985.
[17] F. Dubar, G. Anquetin, B. Pradines, D. Dive, J. Khalife, C. Biot, J. Med. Chem., 2009, 52, 7954–2957.
[18] A.V. Shindikar, C. Viswanathan, Bioorg. Med. Chem. Lett., 2005, 15, 1803–1806.
[19] P.G. Reddy, S. Baskaran, Tetrahedron Lett., 2001, 42, 6775–6777.
[20] K. Kawakami, K. Namba, M. Tanaka, N. Matsuhashi, K. Sato, M. Takemura, Antimicrob. Agents Chemother.,2000, 44, 2126–2129.
[21] R. Schwarcz, Y. Kajii, S.I. Ono, S.I. Ono, U.S. Patent: 12/742171, 2008.
[22] K. Grohe, H. Heitzer, Liebigs Ann. Chem., 1987, 1, 29–37.
[23] U. Petersen, K. Grohe, K.H. Kuck, U.S. Patent: 4563459, 1986.
[24] U. Petersen, W. Schrock, D. Habich, A. Krebs, T. Schenke, T. Philipps, K. Grohe, R. Endermann, K.D. Bremm, K.G. Metzger, U.S. Patent: 5480879, 1996.
[25] T.A. Lee, J.H. Khoo, S.H. Song, Patent: WO2006009374, 2006.
[26] I. Hayakawa, S. Atarashi, M. Imamura, S. Yokohama, N. Higashihashi, K. Sakano, M. Ohshima, U.S. Patent: 4985557, 1991.
[27] I. Hayakawa, T. Hiramitsu, Y. Tanaka, Chem. Pharm. Bull., 1984, 32, 4907–4913.
[28] Global and Alliance for TB Drug Development Handbook of anti-tuberculosis agents, "Moxifloxacin". Tuberculosis, 2008, 88, 127–131.
[29] B. Guruswamy, R. Arul, Lett. Drug Des. Discov., 2013, 10, 86–93.
[30] S.C. Azimi, E. Abbaspour-Gilandeh, Iran. Chem. Commun., 2016, 4, 245–255.
[31] B. Zakerinasab, M.A. Nasseri, H. Hassani, Iran. Chem. Commun., 2016, 4, 214–225.
[32] S.C. Azimi, E. Abbaspour-Gilandeh, Iran. Chem. Commun., 2016, 4, 245–255.
[33] B. Zakerinasab, M.A. Nasseri, H. Hassani, Iran. Chem. Commun., 2016, 4, 214–225.
[34] M.A. Nasseri, B. Zakerinasab, S. Kamayestani, Iran. Chem. Commun., 2016, 4, 283–294.
[35] M. Beyki, M. Fallah-Mehrjardi, Iran. Chem. Commun., 2017, 5, 374–383.
[36] R. Fazaeli, Z. Mohagheghian, Iran. Chem. Commun., 2016, 4, 198–206.
[37] A. Mirzaie, A. Afzalinia, T. Musabeygi, Iran. Chem. Commun., 2017, 5, 99–104.
[38] H. Veisi, D. Kordestani, S. Sajjadifar, M. Hamelian, Iran. Chem. Commun., 2014, 2, 27–33.
[39] M.A. Nasseri, B. Zakerinasab, S. Kamayestani, Iran. Chem. Commun., 2016, 4, 283–294.
[40] B. Zakerinasab, M.A. Nasseri, H. Hassani, Iran. Chem. Commun., 2016, 4, 214–225.
[41] H. Ghasemnejad-Bosra, A. Rostami, Iran. Chem. Commun., 2017, 5, 129–137.
[42] A. Mirzaie, A. Afzalinia, T. Musabeygi, Iran. Chem. Commun., 2017, 5, 99–104.
[43] B. Maddah, Iran. Chem. Commun., 2017, 5, 58–66.
[44] A. Zare, M. Rezaei, A. Hasaninejad, Iran. Chem. Commun., 2016, 4, 94–101.
[45] M. Bakavoli, V.R. Hedayati, M.M. Heravi, A. Davoodnia, H. Eshghi, Chem. Sci. Trans., 2012, 1, 341–346.
[46] H. Mirzaei, A. Davoodnia, Chin. J. Catal., 2012, 33, 1502–1507.
[47] K. Sayama, H. Arakawa, J. Phys. Chem., 1993, 97, 531–533.
[48] A. Nakhaei, A. Davoodnia, Chin. J. Catal., 2014, 35, 1761–1767.
[49] A. Nakhaei, A. Davoodnia, A. Morsali, Res. Chem. Intermed., 2015, 41, 7815–7826.
[50] A. Nakhaei, S. Yadegarian, A. Davoodnia, Heterocycl. Lett., 2016, 6, 329–339.
[51] S. Yadegarian, A. Davoodnia, A. Nakhaei, Orient. J. Chem.,2015, 31, 573–579.
[52] A. Davoodnia, A. Nakhaei, Synth. React. Inorg. Metal-Org. Nano-Met. Chem., 2016, 46, 1073–1080.
[53] A. Davoodnia, A. Nakhaei, N. Tavakoli-Hoseini, Z. Naturforsch. B, 2016, 71, 219–225.
[54] A. Nakhaei, A. Davoodnia, S. Yadegarian, N. Tavakoli-Hoseini, Iran. J. Org. Chem., 2016, 8, 1919–1927.
[55] M. Rohaniyan, A. Davoodnia, A. Nakhaei, Appl. Organometal. Chem., 2016, 30, 626–629.
[56] A. Nakhaei, A. Davoodnia, S. Yadegarian, Heterocycl. Lett., 2016, 6, 601–608.
[57] E. Kolvari, N. Koukabi, M.M. Hosseini, M. Vahidian, E. Ghobadi, RSC Advances, 2016, 6, 7419–7425.
[58] A. Amoozadeh, S. Rahmani, M. Bitaraf, F.B. Abadi, E. Tabrizian, New J. Chem., 2016, 40, 770–780.