Organic chemistry
Nahid Rasouli; Maryam Movahedi; Elaheh Aghabeikzadeh Naeini
Volume 6, Issue 2, pp. 109-217, Serial No. 19 , April 2018, , Pages 169-179
Abstract
In this study, the zinc chromium ferrite magnetic nanoparticles ZnCrFeO4 are synthesized via sol-gel method and characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The XRD analysis showed that ZnCrFeO4 has single-phase ...
Read More
In this study, the zinc chromium ferrite magnetic nanoparticles ZnCrFeO4 are synthesized via sol-gel method and characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The XRD analysis showed that ZnCrFeO4 has single-phase cubic structure. The synthesized ZnCrFeO4 has been used as an efficient catalyst for acetylation of alcohols, phenols and amines with acetic anhydride under mild and solvent free conditions. The ZnCrFeO4 catalyst can be readily removed using an external magnet and no obvious loss of activity was observed after three consecutive runs. Also, the effect of time, amount and type of catalyst were investigated.
Physical chemistry
Alireza Amini khouzani; Nasrin Sohrabi; Nahid Rasouli; Mahboube Eslami Moghadam
Volume 6, Issue 1, pp. 1-108, Serial No. 18 , January 2018, , Pages 30-38
Abstract
In this study, a nickel (II) complex with 1,10-phenanthroline based ligand, [Ni(FIP)2](OAC)2 (1) with FIP = 2-(Furan-2-yl)-1H-Imidazole[4,5-f][1,10] phenanthroline as ligand was synthesized and characterized by spectroscopic methods and elemental analysis. The interaction of [Ni(FIP)2](OAC)2 (1) with ...
Read More
In this study, a nickel (II) complex with 1,10-phenanthroline based ligand, [Ni(FIP)2](OAC)2 (1) with FIP = 2-(Furan-2-yl)-1H-Imidazole[4,5-f][1,10] phenanthroline as ligand was synthesized and characterized by spectroscopic methods and elemental analysis. The interaction of [Ni(FIP)2](OAC)2 (1) with calf-thymus DNA (ct-DNA) was studied by UV-vis absorption, fluorescence spectroscopies and viscosity measurements in 20 mM Tris/HCl buffer solution, pH 7.0 at 25 °C. The complex (1) interacts with ct-DNA with an intrinsic binding constant of 1.11 ×105 M-1. Furthermore, the thermodynamic studies suggested that the interaction processes were endothermic disfavored (ΔH >0) and entropy favored (ΔS >0). The viscosity studies showed no considerable increasing changes in the viscosity of ct-DNA with increasing of the complex (1) concentration. Therefore, the [Ni(FIP)2](OAC)2 complex bind to ct-DNA via hydrophobic interaction as the main forces acting during the binding processes and the mode of binding is groove binding which was illustrated by hyperchromism in the UV-vis absorption band of [Ni(FIP)2](OAC)2 (1) with addition of ct-DNA and the decreasing of ethidium bromide (EB)-ct-DNA complex fluorescence in the presence of different concentrations of [Ni(FIP)2](OAC)2 complex and the unchanged viscosity of ct-DNA.