Document Type : Original Research Article

Authors

1 payame noor university

2 Payame Noor University

3 Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran.

Abstract

In this study, a nickel (II) complex with 1,10-phenanthroline based ligand, [Ni(FIP)2](OAC)2 (1) with FIP = 2-(Furan-2-yl)-1H-Imidazole[4,5-f][1,10] phenanthroline as ligand was synthesized and characterized by spectroscopic methods and elemental analysis. The interaction of [Ni(FIP)2](OAC)2 (1) with calf-thymus DNA (ct-DNA) was studied by UV-vis absorption, fluorescence spectroscopies and viscosity measurements in 20 mM Tris/HCl buffer solution, pH 7.0 at 25 °C. The complex (1) interacts with ct-DNA with an intrinsic binding constant of 1.11 ×105 M-1. Furthermore, the thermodynamic studies suggested that the interaction processes were endothermic disfavored (ΔH >0) and entropy favored (ΔS >0). The viscosity studies showed no considerable increasing changes in the viscosity of ct-DNA with increasing of the complex (1) concentration. Therefore, the [Ni(FIP)2](OAC)2 complex bind to ct-DNA via hydrophobic interaction as the main forces acting during the binding processes and the mode of binding is groove binding which was illustrated by hyperchromism in the UV-vis absorption band of [Ni(FIP)2](OAC)2 (1) with addition of ct-DNA and the decreasing of ethidium bromide (EB)-ct-DNA complex fluorescence in the presence of different concentrations of [Ni(FIP)2](OAC)2 complex and the unchanged viscosity of ct-DNA.

Graphical Abstract

A spectroscopic study on Calf thymus DNA binding properties of nickel (II) complex with imidazole derivatives of 1,10-phenanthroline ligand

Keywords

Main Subjects

[1] J.B. Chaires, Bioploymers., 1998, 44, 201-215.
[2] A.M. Pyle, J.P. Rehman, R. Meshoyrer, C.V. Kumar, N. J.Turro, J.K. Barton, J.Am.Chem.Soc., 1989, 111, 3051-3058.
[3] K. Naing, M. Takahashi, M. Taniguchi, A. Yamagishi, Bull.Chem. Soc. Jpn., 1994, 67, 2424-2429.
[4] K.E. Erkkila, D.T. Odom, J.K. Barton, Chem. Rev., 1999, 99, 2777-2796.
[5] N. Shahabadi, L. Heidari, Spectrochim Acta A: Mol Biomol Spec., 2014, 128, 377-385.
[6] D.M. Kong, J. Wang, L.N. Zhu, Y.W. Jin, X.Z. Li, X.H. Shen, H.F. Mi, J. Inorg. Biochem., 2008, 102, 824-832.
[7] M. Costa, Annu. Rev. Pharmacool. Toxicol., 1991, 31, 321-337.
[8] K.S. Kasprzak, Chem. Res. Toxicol., 1991, 4, 604-615.
[9] X.P. Jin, L. Zhang, H.Q. Gao, J.H. Fang, R.F. Li, Prog. Chem., 2013, 25, 1898-1905.
[10] J.J. Martinez Medina, M.S. Islas, L.L. Lopez Tevez, E.G.Ferrer, N. B. Okulik, J. Mol. Struct., 2014, 1058, 298-307.
[11] S. Anbu, S. Killivalavan, E.C.B.A. Alegria, G. Mathan, M. Kandaswamy, J. Coord. Chem., 2013, 66, 3989-4003.
[12] R.O. Bonello, I.R. Morgan, B.R. Yeo, L.E.J. Jones, B.M. Kariuki, J. Organomet. Chem., 2014, 749, 150-156.
[13] M. Gomleksiz, C. Alkan, B.S. Erdem, Afr. J. chem., 2013, 66, 107-112.
[14] M. Eslami Moghadam, A. Divsalar, A. Abolhosseini, A.K. Saboury, J. Biomol. Struct. Dyn., 2015, Accepted.
[15] J.K. Barton, A.T. Danishefsky, J.M. Goldberg, J. Am. Chem. Soc., 1984, 106, 2172-2176.
[16] R.F. Pasternack, E.J. Gibbs, J. J.Villafranca, Biochem., 1983, 22, 2406-2414.
[17] G. Pratviel, J. Bernadou, B.J. Meunier, Adv. Inorg. Chem., 1998, 45, 251-312.
[18] N. Shahabadi, Z. Mirzaei, N. Hosseinpour Moghadam, Spectrochim Acta A Mol Biomol Spectrosc., 2012, 96, 723-728.
[19] Y.N. Xiao, C.X. Zhan, J. Appl. Polym. Sci., 2002, 84, 887-893.
[20] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am. Chem. Soc., 1989, 111, 3051-3058.
[21] S. Das, G.S. Kumar, J. Mol. Struct., 2008, 872, 56-63.
[22] S.C. Bi, D. Qiao, D. Song, Y. Tian, D. Gao, Y. Sun, H. Zhan, Sens. Actuators, B. Chem., 2006, 119, 199-208.
[23] T.R. Li, Z. Yang, B. Wang, D.D. Qin, Eur. J. Med. Chem., 2008, 43, 1688-1695.
[24] N. Shahabadi, S. Kashanian, F. Darabi, Eur. J. Med. Chem., 2010, 45, 4239-4245.
[25] S. Sharma, S. Singh, K.M. Chandra, D.S. Pandey, J. Inorg. Biochem., 2005, 99, 458-466.
[26] J. Olmsted, D.R. Kearns, Biochem., 1977, 16, 3647-3654.
[27] Y. Ni, D. Lin, S. Kokot, Anal. Biochem., 2006, 352, 231-242.
[28] J. Zhao, W. Li, R. Ma, S. Chen, S. Ren, T. Jiang, Int. J. Mol. Sci., 2013, 14, 16851-16865.
[29] F.J. Meyer, D. Porschke, Biochem., 1993, 32, 4246-4253.
[30] M.R. Eftink, C.A. Ghiron, Anal. Biochem., 1981, 114, 199-227.
[31] Y.J. Jang. G.Y. Yeo, B. Park, S.K. Kim, Biophys. Chem., 2011, 158, 38-45.
[32] D.J. Tan, Y. He, L. Qiu, Z.T. Zhang. Chem. Res.Appl., 2007, 19, 502-506.
[33] S. Kashanian, M. M Khodaei, P. Pakravan, DNA .Cell., 2010, 29, 639-646.
[34] M. Cory, D.D. Mckee, J. Kagan, D.W. Henry, J. Miller, J. Am. Chem. Soc., 1985, 107, 2528-2536.
[35] M. Waring, J. Mol. Biol., 1965, 13, 269-282.