Foroozan Hasanpour; Masoumeh Taei; Masoud Fouladgar; Mehdi Salehi
Abstract
In this study, Nd-doped cobalt oxide (Nd-Co3O4) nanoparticles were prepared by a combustion synthesis procedure using Co(acac)3 complex. The nanoparticles were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy ...
Read More
In this study, Nd-doped cobalt oxide (Nd-Co3O4) nanoparticles were prepared by a combustion synthesis procedure using Co(acac)3 complex. The nanoparticles were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Then, the effect of Nd-Co3O4 on the electrocatalytic activity of gold nanodendrites (AuNDs) electrodeposited on a glassy carbon electrode (GCE) for ethanol oxidation was studied. The results showed that the Nd-Co3O4/AuNDs/GCE presents higher active surface area and current density (about 2 times) for the ethanol oxidation compared with the AuNDs/GCE. Cyclic voltammetry and chrono-potentiometry methods proved that the Nd-Co3O4/AuNDs/GCE is able to increase a long-term stability of electrode in alkaline ethanol fuel cell by providing OHads species at the surface of the catalysts. Consequently, the Nd-Co3O4/AuNDs/GCE, as an anodic electrode, reveals potent catalytic activity for ethanol oxidation in alkaline media.
Analytical chemistry
Masoumeh Taei; Foroozan Hasanpour; Marjan Shavakhi
Volume 3, Issue 1, pp. 1-71, Serial No.6 , January 2015, , Pages 16-25
Abstract
A carbon-paste electrode (CPE) chemically modified with the N-4,4'-azodianiline(ferrocenyl Schiff base) complex and multi wall carbon nanotubes (ADAFCNTE) was used as a highly sensitive electrochemical sensor for determination of trace amounts of atenolol. The oxidation peak potentials in cyclic voltammogram ...
Read More
A carbon-paste electrode (CPE) chemically modified with the N-4,4'-azodianiline(ferrocenyl Schiff base) complex and multi wall carbon nanotubes (ADAFCNTE) was used as a highly sensitive electrochemical sensor for determination of trace amounts of atenolol. The oxidation peak potentials in cyclic voltammogram of ADAFCNTE occurred around 550 mV vs Ag/AgCl (at pH 6.0) while this peak potential at the carbon paste electrode appeared around 800 mV at the same scan rate of 10 mV s−1. The kinetic parameters such as electron transfer coefficient, α, and rate constant for chemical reaction between atenolol and redox sites in modified electrode were 0.41 and 2.8×102 cm3 mol-1 s-1, respectively. The catalytic peak current was linearly dependent on atenolol concentration in the range of 0.1-57.0 µmol L-1 with a detection limit of 0.08 µmol L-1. Finally, the sensor was examined as a selective, simple and precise new electrochemical sensor for the determination of atenolol in urine samples, with satisfactory results.