Document Type: Original Research Article

Authors

1 Department Of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran, P. O. Box=68135-465

2 Lorestan Univesity

3 Lorestan University

4 LU

Abstract

ZnO nanostructures of different methods and sizes were grown in a controlled manner using a simple hydrothermal and sonochemical technique. Controlling the content of concentration and temperature of the reaction mixture, spherical nanoparticles ZnO structures could be synthesized at temperatures 100-150 °C with excellent reproducibility in solvothermal and at different power and time in sonochemical methods. These ZnO nanostructures have been tested for CO2 gas monitoring by depositing them as thick films on an inter-digitated alumina substrate and evaluating the surface resistance of the deposited layer as a function of operating temperature and CO2 concentrations. The gas sensitivity tests have demonstrated that the ZnO nanostructures, spherical morphology, exhibit high sensitivity to CO2 proving their applicability in gas sensors. The role of the nanostructure on the sensing properties of ZnO is also discussed.

Graphical Abstract

Keywords

Main Subjects

[1] N. Yamazoe, Sens. Actuators B, 1991, 5, 7-19.

[2] E. Comini, Analytica Chimica Acta, 2006, 568, 28–40.

[3] N. Bonini, M.C. Carotta, V. Guidi, C. Malagu, G. Martinelli, L. Paglialonga, M. Sacerdoti, Sens. Actuators B, 2000, 68, 274-280.

[4] E. Comini, G. Sberveglieri, M. Ferroni, V. Guidi, C. Frigeri, D. Boscarino, J. Mater. Res., 2001, 16, 1559-1564.

[5] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science, 2001, 291, 1947-1949.

[6] E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, Z.L. Wang, Appl. Phys. Lett., 2002, 81, 1869-1871.

[7] C.B. Murray, C.R. Kagan, M.G. Bawendi, Annu. Rev. Matter Sci., 2006, 30, 545-610.

[8] G.-M. Chow, N. IvanovaNoskova, Nano-structured Materials Science and Technology, Kluwer Academic Publishers, Dordrecht, 1998.

[9] L. Mazzola, Nat. Biotechnol, 2003, 21, 1137-1143.

[10] R. Paul, J. Wolfe, P. Hebert, M. Sinkula, Nat. Biotechnol, 2003, 20, 277-282.

[11] G. Blaser, T. Ruhl, C. Diehl, M. Ulrich, D. Kohl, Physica A: Statistical and Theoretical Physics, 1999, 266, 218–223.

[12] G. Korotcenkov. Sensors and Actuators B, 2005, 107, 209–232.

[13] B. Levy. Journal of Electroceramics, 1997, 1, 239–272.

[14] J. Bandara, C.M. Divarathne, S.D. Nanayakkara, Solar Energy Materials and Solar Cells, 2004, 81, 429–437.

[15] J. Bandara, J.P. Yasomanee, Semiconductor Science and Technology, 2007, 22, 20–24.

[16] C.L. Liao, Y.H. Lee, S.T. Chang, K.Z. Fung, Journal of Power Sources, 2006, 158, 1379–1385.

[17] J. Liqiang, W. Baiq, X. Baifu, L. Shudan, S. Keying, C. Weimin and F. Honggang, J. Solid State Chem., 2004, 177, 4221-4227.

[18] V.R. Shinde, T.P. Gujar and C.D. Lokhande, Sens. Actuators, B, 2007, 120, 551-559.

[19] S.K.N. Ayudhya, P. Tonto, O. Mekasuwandumrong, V. Pavarajarn, P. Praserthdam, Cryst. Growth Des, 2006, 6, 2446-2450.

[20] M. Vafaee, M.S. Ghamsari, Mater. Lett., 2007, 61, 3265-3268.

[21] Y.S. Kim, W.P. Tai, S.J. Shu, Thin Solid Films, 2005, 491, 153-160.

[22] C. Wu, X. Qiao, J. Chen, H. Wang, F. Tan, S. Li, Mater. Lett., 2006, 60, 1828-1832.

[23] Xiaochen Sun, Hongzhou Zhang, Jun Xu, Qing Zhao, Rongming Wang and Dapeng Yu., Solid State Commun., 2004, 129, 803-807.

[24] P.X. Gao, Z.L. Wang, Appl. Phys. Lett., 2004, 84, 2883-2885.

[25] L. Vayssieres, Adv. Mater, 2003, 15, 464-466.

[26]  C.H. Liu, J.A. Zapien, Y. Yao, X.M. Meng, C.S. Lee, S.S. Fan, Y. Lifshitz, S.T. Lee, Adv. Mater, 2003, 15, 838-841.

[27] H. Zhang, X.Y. Ma, J. Xu, J. Niu and D. Yang, Nanotechnology, 2003, 14, 423-426.

[28] Y. Liu, J. Zhou, A. Larbot, M. Persin, J. Mater. Process. Technol, 2007, 189, 379-383.

[29] Z. Fan, D. Wang, P. Chan, W. Tseng, J.G. Lu, App. Phys. Lett., 2004, 84, 5925-5931.

[30] Z. Fan, J.G. Lu, Appl. Phys. Lett., 2005, 86, 032111-3.

[31] Z. Fan, J.G. Lu, Appl. Phys. Lett., 2005, 86, 123510-3.

[32] X. Wen, W. Zhang, S. Yang, Z.R. Dai, Z.L. Wang, Nano. Lett., 2002, 2, 1397-1401.

[33] Y. Chang, H.C. Zeng, Cryst. Growth Des, 2004, 4, 397-402.

[34] G.H. Yue, P.X. Yan, D. Yan, J.Z. Liu, D.M. Qu, Q. Yang, X.Y. Fan, J. Crystal Growth, 2006, 293, 428-432.

[35]  J.Q. Hu, Y. Bando, J.H. Zhan, Y.B. Li, T. Sekiguchi, Appl. Phys. Lett., 2003, 83, 4414-4416.

[36] J.J.Wang, M.Y. Zhu, R.A. Outlaw,
X. Zhao, D.M. Manos, B.C. Holloway, V.P. Mammana, Appl. Phys. Lett., 2004, 85, 1265-1267.

[37] J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Phys. Rev. B, 1988, 38, 11322-11330.

[38] D. Wu, Q. Zhang, M. Tao, Phys. Rev. B, 2006, 73, 235.

[39] H. Yamada, X.G. Zheng, Y. Soejima, M. Kawaminami, Phys. Rev. B, 2004, 69, 104104-1-7.

[40] X.G. Zheng, Y. Kodama, K. Saito, E. Tanaka, Y. Tomokiyo, H. Yamada, C.N. Xu, Phys. Rev. B, 2004, 69, 094510-0945105.

[41] A. Chowdhuri, P. Sharma, V. Gupta, K. Sreenivas, K.V. Rao, J. Appl. Phys., 2002, 92, 2172-2180.

[42] G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Sens. Actuators B, 2008, 132, 224–233.