Application of N-4,4'-azodianiline(ferrocenyl Schiff base) for electrocatalytic determination of atenolol on modified carbon paste electrode

Document Type: Review Article

Authors

1 Department of Chemistry, Payame Noor University, PB BOX 19395-4697 Tehran, Iran

2 1Department of Chemistry, Payame Noor University, PB BOX 19395-4697 Tehran, Iran

Abstract

A carbon-paste electrode (CPE) chemically modified with the N-4,4'-azodianiline(ferrocenyl Schiff base) complex and multi wall carbon nanotubes (ADAFCNTE) was used as a highly sensitive electrochemical sensor for determination of trace amounts of atenolol. The oxidation peak potentials in cyclic voltammogram of ADAFCNTE occurred around 550 mV vs Ag/AgCl (at pH 6.0) while this peak potential at the carbon paste electrode appeared around 800 mV at the same scan rate of 10 mV s−1. The kinetic parameters such as electron transfer coefficient, α, and rate constant for chemical reaction between atenolol and redox sites in modified electrode were 0.41 and 2.8×102 cm3 mol-1 s-1, respectively. The catalytic peak current was linearly dependent on atenolol concentration in the range of 0.1-57.0 µmol L-1 with a detection limit of 0.08 µmol L-1. Finally, the sensor was examined as a selective, simple and precise new electrochemical sensor for the determination of atenolol in urine samples, with satisfactory results.

Graphical Abstract

Application of N-4,4'-azodianiline(ferrocenyl Schiff base) for electrocatalytic determination of atenolol on modified carbon paste electrode

Keywords

Main Subjects


[1] J.E.F. Reynolds (Ed.), Martindale, 30th ed., Pharmaceutical Press, London, 1993, 629.

[2] H. Winkler, W. Ried, B. Lemmer, J. Chromatogr. Biomed. Appl., 1982, 228, 223-234.

[3] H. Siren, M. Saarinen, S. Hainari, P.Lukkari, M.L. Riekkola, J. Chromatogr. A, 1993, 632, 215-227.

[4] N. Metzler-Nolte, M. Salmain, John Wiley & Sons, London, 2008, 499.

[5] M.F.R. Fouda, M.M. Abd-Elzaher, R.A. Abdelsamaia, A.A. Labib, Appl. Organomet. Chem., 2007, 21, 613-625.

[6] M. Salmain, Wiley-VCH: Weinheim 2006, 181.

[7] F. Dubar, J. Khalife, J. Brocard, D. Dive, C. Biot, Molecules, 2008, 13, 2900-2907.

[8] A. Vessieres, S. Top, W. Beck, E. Hillard, G. Jaouen, Dalton Trans., 2006, 28, 529-541.

[9] J. Paster, L. Mejstr´ıkov´, J. Zoulov´, K. Macek, J. Kvetina, J. Pharm. Biomed. Anal., 2007, 44, 674–679.

[10] M. Caban, P. Stepnowski, M. wiatkowski, N. Migowska, J. Kumirska, J. Chromatogr., A, 2011, 1218, 8110–8122.

[11] S. Dwivedi, N. Upadhaya, A. Uday, P. Sanjay, Int. J. Drug Dev. Res., 2011, 1, 134–137.

[12] D. Kong, S. Li, X. Zhang, J. Gu, M. Liua, Y. Menga, Y. Fua, X.J. La, G. Xue, L. Zhang, Q. Wang, J. Chromatogr., B: Anal. Technol. Biomed. Life Sci., 2010, 878, 2989–2996.

 [13] A. Van Eeckhaut, M.R. Detaevernier, Y. Michotte, J. Pharm. Biomed. Anal., 2004, 36, 799–805.

[14] M. Spanakis, I. Niopas, Journal of Chromatographic Science, 2013, 51, 128–132.

[15] M. Kurihara, M. Kurosawa, T. Matsuda and H. Nishihara, Synthetic Metals, 1999, 102, 1517-1518.

[16] R.N. Goyal, V.K. Gupta, M. Oyama, N. Bachheti, Electrochem. Commun., 2006, 8, 65-70.

[17] R.H. Patil, R.N. Hegde, S.T. Nandibewoor, Ind. Eng. Chem. Res., 2009, 48, 10206-10210.

[18] M. Arvand, M. Vaziri, M. Vejdani,   Mater. Sci. Eng C, 2010, 30, 709-714.

[19] D.P. Nikolelis, S.S.E. Petropoulou, M.V. Mitrokotsa, Bioelectrochemistry, 2002, 58, 107-112.

[20] R.N. Goyal, S.P. Singh, Talanta, 2006, 69, 932-939.

[21] P. Cervini, L.A. Ramos, E.T.G. Cavalheiro, Talanta, 2007, 72, 206-209.

[22] M. Behpour, E. Honarmand, S.M. Ghoreishi, Bull. Korean Chem. Soc., 2010, 31, 845-849.

[23] A. Khoobi, S.M. Ghoreishi, S. Masoum, M. Behpour, Bioelectrochemistry, 2013, BIOJEC-06673.

[24] M. Hasanzadeh, M.H. Pournaghi-Azar, N.Shadjou, A. Jouyban, RSC Adv., 2014, 4, 4710-4717.

[25] M. Mazloum-Ardakani, H. Beitollahi, B. Ganjipour, H. Naeimi, M. Nejati,  Bioelectrochemistry, 2009, 75, 1-8.

[26] C. Vetuschi, G. Ragno, Int. J. Pharm., 1990, 65, 177-181.