Document Type: Original Research Article

Authors

1 Department of Physical Chemistry, University of Tabriz, Tabriz, Iran

2 Department of Chemistry, Kharazmi (Tarbiat Moallem) University, Tehran, Iran

Abstract

The character of the intermolecular interactions in Cl2-HX (X =F, Cl and Br) complexes has been investigated by means of the second-order Möller–Plesset perturbation theory (MP2) and the density functional theory (DFT) calculations. The results show that there are two types of lowest interaction potential equilibrium structures in the interactions between Cl2 and HX: X∙∙∙Cl type geometry and hydrogen-bonded geometry. The calculated interaction energies show that the X∙∙∙Cl type structures are more stable than the corresponding hydrogen-bonded structures. The nature of the intermolecular interactions has been also investigated by natural bond orbital (NBO) and atoms in molecules (AIM). The AIM analysis reveals that both types of intermolecular interactions are “closed-shell” noncovalent interactions.

Graphical Abstract

Keywords

Main Subjects

[1]  D. Philp, J.F. Stoddart, Angew. Chem. Int. Ed. Engl., 1996, 35,  1154-1196.

[2] J. Cerny, P. Hobza, Phys. Chem. Chem. Phys., 2007, 9,  5291-5303.

[3] S.J. Grabowski, Chem. Rev., 2011, 111,  2597-2625.

[4] G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond: In Structural Chemistry and Biology, Oxford University Press, 2001.

[5] S.J. Grabowski, Hydrogen Bonding: New Insights, Springer London, Limited, 2006.

[6] T.M. Krygowski, J.E. Zachara-Horeglad, M. Palusiak, J. Org. Chem., 2010, 75,  4944-4949.

[7] P. Politzer, J. Murray, M. Concha, J. Mol. Model., 2007, 13,  643-650.

[8] K.E. Riley, J.S. Murray, P. Politzer, M.C. Concha, P. Hobza, J. Chem. Theory Comput., 2008, 5,  155-163.

[9] P. Politzer, P. Lane, M. Concha, Y. Ma, J. Murray, J. Mol. Model., 2007, 13,  305-311.

[10] P. Politzer, J.S. Murray, T. Clark, Phys. Chem. Chem. Phys., 2010, 12,  7748-7757.

[11] Y. Jiang, A.A. Alcaraz, J.-M. Chen, H. Kobayashi, Y.J. Lu, J.P. Snyder, J. Med. Chem., 2006, 49,  1891-1899.

[12] M.L. López-Rodríguez, M. Murcia, B. Benhamú, A. Viso, M. Campillo, L. Pardo, J. Med. Chem., 2002, 45,  4806-4815.

[13] H. Zhuo, M. Liu, Q. Li, W. Li, J. Cheng, Spectrochim. Acta, Part A, 2014, 127,  10-15.

[14] M. Domagała, P. Matczak, M. Palusiak, Comput. Theor. Chem., 2012, 998,  26-33.

[15] J. Wu, J. Zhang, Z. Wang, W. Cao, Int. J. Quantum Chem., 2007, 107,  1897-1906.

[16] J. Wu, J. Zhang, Z. Wang, W. Cao, J. Chem. Theory Comput., 2006, 3,  95-102.

[17] B. Jing, Q. Li, R. Li, B. Gong, Z. Liu, W. Li, J. Cheng, J. Sun, Comput. Theor. Chem., 2011, 963,  417-421.

[18] X. Liu, J. Cheng, Q. Li, W. Li, Spectrochim. Acta, Part A, 2013, 101,  172-177.

[19] W. Wu, Y. Lu, Y. Liu, H. Li, C. Peng, H. Liu, W. Zhu, Chem. Phys. Lett., 2013, 582,  49-55.

[20] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev., 1988, 88,  899-926.

[21] R.F.W. Bader, Atoms in Molecules. A Quantum Theory, Clarendon Press, Oxford, UK, 1990.

[22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, A. Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh PA, 2003.

[23] A.D. Becke, J. Chem. Phys., 1993, 98,  5648-5652.

[24] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 1988, 37,  785-789.

[25] W.J. Hehre, Ab initio molecular orbital theory, Wiley, 1986.

[26] S.F. Boys, F. Bernardi, Mol. Phys., 1970, 19,  553-566.

 [27] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO Version 3.1.

[28] F.W. Biegler Konig, J. Schonbohm, D. Bayles, J. Comput. Chem., 2001, 22,  545-559.

[29] M. Ziółkowski, S.J. Grabowski, J. Leszczynski, J. Phys. Chem. A, 2006, 110,  6514-6521.