DFT study of dimers of dimethyl sulfoxide in gas phase

Document Type: Original Research Article

Authors

1 Modeling and Optimization Research Center in Science and Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran, P.O. Box 11365-4435

2 Department of Chemistry, Faculty of Sciences, Arak University, Arak 38156-8-8349, Iran

Abstract

Density functional (DFT) calculations at M05-2x/aug-cc-pVDZ level were used to analyze the interactions between dimethyl sulfoxide (DMSO) dimers. The structures obtained have been analyzed with the Atoms in Molecules (AIMs) and Natural Bond Orbital (NBO) methodologies. Four minima were located on the potential energy surface of the dimers. Three types of interactions are observed, CH•••O, CH•••S hydrogen bonds and orthogonal interaction between the lone pair of the oxygen with the electron-deficient region of the sulfur atom. Stabilization energies of dimers including BSSE and ZPE are in the range 27–40 kJ mol-1. The most stable conformers of dimers at DFT level is cyclic structure with antiparallel orientation of S=O groups that pairing with three C–H…O and a S…O interactions.

Graphical Abstract

DFT study of dimers of dimethyl sulfoxide in gas phase

Keywords

Main Subjects


[1] G.A. Jeffrey. An introduction to hydrogen bonding. Oxford University Press, New York, 1997.

[2] S. Scheiner. Hydrogen bonding, Oxford University Press, New York, 1997.

[3] G.R. Desiraju, T. Steiner. The weak hydrogen bond, Oxford University Press, Oxford, 1999.

[4] S. Scheiner Ed., Molecular Interactions: From Van der Waals to Strong Bound Complexes, Wiley, Chichester, U.K, 1997.

[5] G.A. Jeffrey, W. Saenger. Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin, 1991.

[6] G.R. Desiraju, T. Steiner. The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford, New York, 1999.

[7] Y. Gu, T. Kar, S. Scheiner,THEOCHEM., 2000, 500, 441-452.

[8] S.J. Grabowski Ed. Hydrogen Bonding-New Insights, Springer, Dordrecht, 2006.

[9] T. Kar, S. Scheiner, J. Phys. Chem. A., 2004, 108, 9161-9168.

[10] G. Gilli, P. Gilli. The Nature of the Hydrogen Bond, Oxford University Press, Oxford, UK. 2009.

[11] Q. Li, H. Wang, Z. Liu, W. Li, J. Cheng, B. Gong, J. Sun, J. Phys. Chem. A., 2009, 113, 14156-14160.

[12]  G. Orlova, S. Scheiner, J. Phys. Chem. A., 1998, 102, 4813-4818.

[13]  B.G.D. Oliveira, MN. Ramos, Int. J. Quant. Chem.,  2010, 110, 307-316.

[14] M. Nishio, Y. Umezawa, K. Honda, S. Tsuboyama , H, Suezawa, Cryst. Eng. Comm., 2009, 11, 1757-1788.

[15] S. Hammerum, J. Am. Chem. Soc., 2009, 131, 8627-8635.

[16] M. Solimannejad, Scheiner, Chem. Phys. Lett., 2006, 424, 1-6.

[17] S. Scheiner, J. Phys. Chem. B., 2009, 113, 10421-10427.

[18] S. Cybulski, S. Scheiner, J. Am. Chem. Soc., 1987, 109, 4199-4206.

[19] Z. Latajka, S. Scheiner, J. Comput. Chem., 1987, 5, 674-682.

[20] S. Scheiner, Theor. Chim. Acta., 1980, 57, 71-80.

[21] H.S. Biswal, S. Wategaonkar, J. Phys. Chem. A., 2009, 113, 12763-12773.

[22] R.F. Freitas, S.E. Galembeck, Chem. Phys. Lett., 2006, 423, 131-137.

[23] E.J. Cocinero, R. Sánchez, S. Blanco, A. Lesarri, JC. López, JL. Alonso, Chem. Phys. Lett., 2005, 402, 4-10.

[24] F.H. Allen, C.M. Bird, R.S. Rowland, P.R. Raithby, Acta. Cryst., 1997, B53, 680-695.
[25] F. Wennmohs, V. Staemmler, M. Schindler, J. Chem. Phys., 2003, 119, 3208-3218.
[26] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem., 1993, 14, 1347−1363.

[27] Y. Zhao,  N.E. Schultz, D.G. Truhlar, J. Chem. Theory. Comput., 2006, 2, 364-382.
[28] Y. Zhao, D.G. Truhlar, J. Chem. Theory. Comput., 2006, 2, 1009-1018 .

[29] S.F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553-566.

[30] R.F.W. Bader, Atoms in Molecules: A Quantum Theory. Clarendon Press, Oxford, 1990.

[31] F. Biegler-Konig, J. Schonbohm AIM 2000 Program Package, Ver.2.0, University of Applied Sciences, Bielefield, Germany, 2002.

[32] E.D. Glendening, J. Am. Chem. Soc., 1996, 118, 2473-2482.

[33] E.D. Glendening, J. Phys. Chem. A., 2005, 109, 11936-11940.

[34] F. Weinhold, CR. Landis, Valency and Bonding. A Natural Bond Orbital Donor–Acceptor Perspective, Cambridge Press, Cambridge, 2005.

[35] E.D Glendening, J.K Badenhoop, A.E Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F. Weinhold NBO 5.G, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2004.

[36] M.W. Schmidt , K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem., 1993, 14, 1347-1363.

[37] W. Fader, H. Dreizler, H.D. Rudolph, V. Typke, Z. Naturforsch., 1969, 24A, 266-271.

[38] R. Paulini, K. Muller, F. Diederich, Angew. Chem. Int. Ed., 2005, 44, 1788-1805.

[39] G.P.A. Yap, F.A. Jove, R.M. Claramunt, D. Sanz, I. Alkorta, J. Elguero, Aus. J. Chem., 2005, 58, 817-822.

[40] M. Solimannejad, S. Massahi, I. Alkorta, Chem. Phys., 2009, 362, 1-7.

[41] I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc., 2000, 122, 11154-11161.

[42] P. Lipkowski, S.J. Grabowski, J. Leszczynski, J. Phys. Chem. A., 2006, 110, 10296-10302.
[43]  JG. Contreras, E.R. Johnson, S. Keinan, R. Chaudret, J.P. Piquemal, D.N. Beratan, W. Yang, J. Chem. Theory. Comput., 2011, 2011, 625-632.

[44] U. Onthog, T. Megyes, I. Bako, T. Radnai, T. Grosz, K. Hermansson, M. Probst, Phys. Chem. Chem. Phys., 2004, 6, 2136-2139.

[45] RM- Ibberson, Acta. Crystallogr., 2005, C61, o571-o573.