Document Type : Original Research Article

Author

Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI), Karaj P. O. Box 31745-139, Iran.

Abstract

In this work, a tracer study on pore initiation in anodic alumina in oxalic acid was performed. Effects of some experimental parameters such as applied electrical potential, electrolyte composition and heat pretreatment were evaluated. Electrochemical and morphological experiments were performed using potentiostatic anodizing and scanning electron microscopy (SEM) techniques, respectively. Effect of electrolyte composition on current density was discussed. In various electrical potentials, electrolyte composition had different effects on current density. Addition of sulfuric acid into oxalic acid increased porosity. Also, distribution of pore size and pore diameter were influenced by presence of sulfuric acid. Effect of electrolyte composition on the morphology of aluminum surface layer was depended on to the electric potential. Current density and porosity of aluminum surface layer was decreased by heat pretreatment.

Graphical Abstract

The effect of sulfuric acid on pore initiation in anodic alumina formed in oxalic acid

Keywords

Main Subjects

  1. Anodisation of aluminium: New applications for a common technology. Nano Wizard Application Report, Cambridge, UK, September 2003.
  2. A.M.M. Jani, D.Losic, N.H. Voelcker, Prog. Mat. Sci., 2013, 8,636-704.
  3. S. Mezlini, K. Elleuch, S. Fouvry, Ph. Kapsa, Surf. Coat. Technol., 2006, 200, 2852-2856.
  4. V. Lopez, E. Otero, A. Bautista, J.A. Gonzalez, Surf. Coat. Technol., 2000, 124, 76-84.
  5. A. Jagminas, D. Bigeliene, I. Mikulskas, R. Tomasiunas, J. Cryst. Growth., 2001, 233, 591-598.
  6. O. Lunder, J.C. Walmsley, P. Mack, K. Nisancioglu, Corros. Sci., 2005, 47, 1604- 1624.
  7. R. Giovanardi, C. Fontanesi, W. Dallabarba, Electrochim. Acta., 2011, 56, 3128- 3138.
  8. W. Lee, K. Nielsch, U. Go ِ◌sele, Nanotechnology., 2007, 18, 475713(8pp).
  9. G.D. Sulka, in: A. Eftekhari (Ed.), Nanostructured Materials in Electrochemistry, Wiley-VCH, Weinheim, 2008, p. 1.
  10. G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, J.P. Celis, J. Electrochem.Soc., 2002, 149, D97-D103.
  11. G.D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, J.P. Celis, J. Electrochem. Soc., 2004, 151, B260-B264.
  12. G.D. Sulka, M. Jaskuła, J. Nanosci. Nanotechnol., 2006, 6, 3803-3811.
  13. G.D. Sulka, K. Parkoła, Thin Solid Films., 2006, 515,338-345.
  14. G.D. Sulka, K.G. Parkoła, Electrochim. Acta., 2007, 52, 1880-1888.
  15. G.D. Sulka, W.J. St˛epniowski, Electrochim. Acta., 2009, 54, 3683-3691.
  16. L. Zaraska, G.D. Sulka, M. Jaskuła, J. Phys. Conf. Ser., 2009, 146, 1-6.
  17. V. Moutarlier, M.P. Gigandet, J. Pagetti, B. Normand, Surf. Coat. Technol., 2004, 182, 117-123.
  18. H.H. Shih, S.L. Tzou, Surf. Coat. Technol., 2000, 124, 278-285.
  19. L. Domingues, J.C.S. Fernandes, M.D.C. Belo, M.G.S. Ferreira, L.G. Rosa, Corros. Sci., 2003, 45, 149-160.
  20. W. Bensalah, K. Elleuch, M. Feki, M. Wery, H.F. Ayedi, Surf. Coat. Technol., 2007, 201, 7855-7864.
  21. W. Bensalah, K. Elleuch, M. Feki, M. Wery, H.F. Ayedi, Mater. Des., 2009, 30, 3141-3149.
  22. W. Bensalah, K. Elleuch, M. Feki, M. Wery, H.F. Ayedi, Mater. Des., 2009, 30, 3731-3733.
  23. W. Bensalah, M. Feki, M. Wery, H.F. Ayedi, J. Mater. Sci. Technol., 2009, 25, 508-512.
  24. A. B. Wieche´c, M.G. Burke, T. Hashimoto, H. Liu, P. Skeldon, G.E. Thompson, H. Habazaki, J.J. Ganem, I.C. Vickridge, Electrochim. Acta., 2013, 113, 302-306.
  25. I.T. Kaplanoglou, S. Theohari, T. Dimogerontakis, Y.M. Wang, H.H. Kuo, S. Kia, Surf. Coat. Technol., 2006, 200, 2634- 2641.
  26. T. Aerts, I. De Graeve, H. Terryn, Surf. Coat. Technol., 2010, 204, 2754-2760.
  27. J. Ren, Y. Zuo, App. Surf. Sci., 2012, 261, 193-200.
  28. J.K. Chang, C.M.Lin, C.M. Liao, C.H.Chen, W.T.Tsai, J. Electrochem. Soc., 2004, 151, B188-B194.