Document Type: Original Research Article

Authors

1 Department of Ergonomics, Health Sciences Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, IRAN.

2 Young Researchers & Elite Club, Hamedan Branch, Islamic Azad University, Hamedan, IRAN

3 Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, IRAN

Abstract

In the present paper, informatics-aided quantitative structure activity relationship (QSAR) models using genetic algorithm-partial least square (GA-PLS), genetic algorithm-Kernel partial least square (KPLS), and Levenberg-Marquardt artificial neural network (LM ANN) approach were constructed to access the antimalarial activity (pIC50) of 2,5-diaminobenzophenone derivatives. Comparison of errors and correlation coefficients obtained by the models it was shown that the LM ANN approach works with a high correlation coefficient and low prediction error. This model was applied to the prediction of pIC50 values of 2,5-diaminobenzophenone derivatives. Applying the extended model to a dataset of 20 compounds demonstrate the reliability and accuracy of the model. Comparing three models revealed the superiority of the L-M ANN to predict the pIC50 of 2,5-diaminobenzophenones derivatives.

Graphical Abstract

Keywords

Main Subjects

[1] V. Moorthy, Z. Reed, P. G. Smith, Vaccine, 2007, 25, 5115-5123.

[2] S. Mharakurwa, Ph. E. Thuma, D. E. Norris, M. Mulenga, V. Chalwe, J. Chipeta, Sh. Munyati, S. Mutambu, P. R. Mason, Acta Trop., 2012, 13, 531-547.

[3] R. I. Chima, C. A. Goodman, A.  Mills,  Health Pol., 2003, 63,17-36

[4] L. Hviid, Microbes and Infec., 2007, 9, 772-776

[5] M. Nekoei, Iran. Chem. Commun., 2017, 5, 79-98

[6] M. Bouachrin, Y. Bouakarai, F. Khalil, Chem. Method., 2017, 1, 173-193

[7] (a) M. Shahpar, S. Esmaeilpoor, Asian J. Green Chem., 2017, 1(2), 116-129. DOI: 10.22631/ajgc.2017.94413.1010 (b) M. Shahpar, S. Esmaeilpoor, Chem. Method., 2017, 1(2), 98-120. DOI: 10.22631/chemm.2017.96397.1008

[8] H. Noorizadeh, S. Esmaeilpoor, Z. Moghadam, S. Nosratolahy, Iran. Chem. Commun., 2014, 2, 283-299

 [9] R. A. Cormanich, M. P. Freitas, R. Rittner, J. Braz. Chem. Soc., 2011, 22, 37-642.

[10] H. Noorizadeh, A. Farmany, M. Noorizadeh, Quim. Nova, 2011, 34, 1398-1404. 

[11] E. Pourbasheer, S. Riahi, MR. Ganjali, P. Norouzi, Eur. J. Med. Chem., 2009, 44, 5023–5028.

[12] N. Singh, A. Basant, S. Malik, G J. Sinha,  Intell. Lab. Syst., 2009, 99, 150-160

[13] B. Jančić-Stojanović, D. Ivanović, A. Malenović, M. Medenica, Talanta, 2009, 78, 107–112.

[14] M. Jalali-Heravi, M. Asadollahi-Baboli, P. Shahbazikhah, Eur. J. Med. Chem., 2008, 43, 548-556.

[15] H. Noorizadeh, A. Farmany, Drug. Test. Anal., 2012, 4, 151-157.

[16] AA. D'Archivio, M. A. Maggi, P. Mazzeo, F. Ruggieri, Anal. Chim. Acta. 2008, 628, 162 – 172.

[17] B. Jančić, M. Medenica, D. Ivanović, S. Janković, A. Malenović, J Chromatogr A, 2008, 1189, 366-373.

[18] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, 2000. Wiley/VCH, Weinheim.

[19] (a) O. Deeb, Chemom. Intell. Lab. Syst., 2010, 104, 181-194. (b) S. Sajjadifar, Chem. Method., 1(1), 1-11. DOI: 10.22034/chemm.2017.49740

[20] D. Pran Kishore, C. Balakumar, A. Raghuram Rao, P. P. Roy, K. Roy, Bioorg. Med. Chem. Lett., 2011, 21, 818-823

[21] M. Arab Chamjangali, M. Beglari, G. Bagherian, J. Mol. Graphics. Modell., 2007, 26, 360-367.

[22] H. Noorizadeh, A. Farmany, J. Chinese Chem. Soc., 2010, 57, 1268-1277.

[23] H. Noorizadeh, A. Farmany, A.  Khosravi,  J. Chin. Chem. Soc, 2010,  57, 982-991.

[24] A.K. Zhokhov, A.Y. Loskutov, I.V. Rybal’chenko, J. Anal. Chem., 2018, 73, 207-220.

[25] N.  Fan, S. Zhang, T.  Sheng, L.  Zhao, Z.  Liu, J.  Liu, X.  Wang,  Chem. Bio. Drug Des., 2018, 398-407. 

[26] U.  Judycka, K.  Jagiello, M.  Gromelski, L. Bober, J. Błażejowski, T.  Puzyn,  J. Chromatogr. B, 2018, 1095, 8-14.