Fe2V4O13 assisted hetero-Fenton mineralization of methyl orange under UV-A light irradiation

Document Type: Original Research Article

Authors

1 Department of Chemistry, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India

2 Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal

3 Nanomaterials Laboratory, International Research Centre, Kalasalingam University, Krishnan Koil 626 126, Tamil Nadu, India

4 Annamalaiuniversity

Abstract

Fe2V4O13 is prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-diffuse reflectance spectroscopy (UV-DRS), high resolution scanning electron microscopy (HR-SEM) using energy dispersive X-ray spectroscopy (EDX) analysis. The hetero-Fenton catalyst can be used to mineralize Methyl Orange (MO) under UV-A light. The mineralization rate is influenced by hydrogen peroxide (H2O2) concentration, pH, and catalyst loading. The reusability of Fe2V4O13 is analyzed by five successive runs. At the maximum of 95% of degradation is observed in all five cycles. Therefore, the Fe2V4O13 catalyst is found to be reusable. The mineralization is confirmed by chemical oxygen demand (COD) measurements. Mechanism of the heterophoto-Fenton process is also proposed.
Keywords: Fe2V4O13; Methyl Orange; wastewater treatment; hetero-Fenton reaction; photocatalysis

Graphical Abstract

Fe2V4O13 assisted hetero-Fenton mineralization of methyl orange under UV-A light irradiation

Keywords

Main Subjects


[1] N.M. Mahmoodi, Mater. Res. Bull., 2013, 48, 4255–4260.

[2] Z. Zainal, L.K. Hui, M.Z.O. Hussein, A.H. Abdullah, I.R. Hamadneh, J. Hazard. Mater., 2009, 164, 138–145.

[3] A. Ozcan, A.S. Ozcan, J. Hazard. Mater., 2005, 125, 252–259.

[4] V.P. Santos, M.F.R. Pereira, P.C.C. Faria, J.J.M. Orfao, J. Hazard. Mater., 2009, 162, 736–742.

[5] N.M. Mahmoodi, F. Najafi, Mater. Res. Bull., 2012, 47, 1800–1809.

[6] N.M. Mahmoodi, F. Najafi, Micropor. Mesopor. Mater., 2012, 156, 153–160.

[7] M.B. Kasiri, H. Aleboyeh, A. Aleboyeh, Appl. Catal. B, 2008, 84, 9–15.

[8] I. Muthuvel, B. Krishnakumar, M. Swaminathan, Indian J. Chem., 2014, 53A, 672–678.

[9] I. Muthuvel, B. Krishnakumar, M. Swaminathan, Indian J. Chem., 2012, 51A, 807–811.

[10] I. Muthuvel, B. Krishnakumar, M. Swaminathan, J. Environ. Sci., 2012, 24, 529–535.

[11] I. Muthuvel, M. Swaminathan, Sol. Energy Mater. Sol. Cells, 2008, 92, 857–863.

[12] N.M. Mahmoodi, J. Mol. Catal. A, 2013, 366, 254–260.

[13] T.A. Kurniawan, W.H. Lo, Water Res., 2009, 43, 4079–4091.

[14] Y.Y. Zhang, J.H. Deng, C. He, S.S. Huang, S.H. Tian, Y. Xiong, Environ. Technol., 2010, 31, 145–154.

[15] K. Sangeeta, C.N.P. Singh, P. Arpita, A. Rakshit, P.P. Bala, Indian J. Chem., 2015, 54A, 1057–1061.

[16] L.Q. Mai, L. Xu, Q. Gao, C. Han, B. Hu, Y. Pi, Nano Lett., 2010, 10, 2604–2608.

[17] S.Y. Zhang, W.Y. Li, C.S. Li, J. Chen, J. Phys. Chem. B, 2006, 110, 24855–24863.

[18] P. Li, Y. Zhou, H. Li, Q. Xu, X. Meng, X. Wang, M. Xiao, Z. Zou, Chem. Commun., 2015, 51, 800–803.

[19] Y.Y. Zhang, C. He, J.H. Deng, Y.T. Tu, J.K. Liu, Y. Xiong, Res. Chem. Intermed., 2009, 35, 727–737.

[20] Y.Y. Zhang, J.H. Deng, C. He, S.S. Huang, S.H. Tian, Y. Xiong, Environ. Technol., 2010, 31, 145–154.

[21] P. Li, Y. Zhou, W. Tu, Q. Liu, S. Yan, Z. Zou, ChemPlusChem., 2013, 78, 274–278.

[22] H.J. Kuhn, S.E. Braslavsky, R. Schmidt, Pure Appl. Chem., 2004, 76, 2105–2146.

[23] B. Subash, B. Krishnakumar, B. Sreedhar, M. Swaminathan, M. Shanthi, Superlattices Microstruct., 2013, 54, 155–171.

[24] E. Baudrin, S. Denis, F. Orsini, L. Seguin, M. Touboul, J.M. Tarascon, J. Mater. Chem., 1999, 9, 101–105.

[25] G. Thennarasu, A. Sivasamy, J. Chem. Technol. Biotechnol., 2015, 90, 514–524.

[26] G.V. Buxton, C.L. Green Stock, W.P. Helman, A.B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513–886.

[27] K. Velmurugan, B. Krishnakumar, B. Subash, M. Swaminathan, Sol. Energy Mater. Sol. Cells, 2013, 108, 205–212.