A mild protocol for the preparation of 2-amino-dihydropyrano[3,2-b] pyran-3-carbonitriles via cobalt nanoparticles-catalyzed multi-component reaction in water

Document Type: Original Research Article

Author

Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran Research Center of Environmental Chemistry, Payame Noor University, Ardakan, Yazd, Iran

Abstract

An improved rapid one-pot and green synthesis of substituted pyranopyranes by condensing Kojic acid, malononitrile, and different aldehydes and using a catalytic amount of cobalt nanoparticles as green and reusable catalyst is reported for the first time. The reaction proceeds in aqueous media at ambient temperature. Furthermore, the structural and morphological study of the cobalt nanoparticles was carried out using scanning electron microscopy (SEM), energy dispersive X-ray spectrum (EDS), and Dynamic light scattering (DLS) techniques. Utilization of simple procedure, high yields and the ease of separation of pure product, ease of catalyst separation by an external magnet and convenient manipulation, that makes this methodology as an interesting option for green synthesis of 2-amino-dihydropyranopyran-3-carbonitriles.

Graphical Abstract

A mild protocol for the preparation of 2-amino-dihydropyrano[3,2-b] pyran-3-carbonitriles via cobalt nanoparticles-catalyzed multi-component reaction in water

Keywords

Main Subjects


[1] J. Safari, S. Dehghan Khalili, M. Rezaei, S. H. Banitaba, F. Meshkani, Monatsh. Chem., 2010, 141, 12, 1339-1345.

[2] V. Polshettiwar, J. Basset, M. D, Astruc, ChemSusChem., 2012, 5,. 6-8.

[3] V. Polshettiwar, R. S. Varma, Green Chem., 2010, 12, 743-754.

[4] C.W. Lim, I.S. Lee, Nano To day., 2010, 5, 412-434.

[5] M. Beller, B. Cornils, C.D. Frohning C.W., Kohlpaintner, J. Mol. Catal. A: Chem., 1995, 104, 17-85.

[6] F. Ungvary, Coord. Chem. Rev., 2007, 251, 2087-2102.

[7] F. Wen, H. Bönnemann, J. Jiang, D. Lu, Appl. Organomet. Chem., 2005, 19, 81-89. 

[8] A. J. Bruss, M .A. Gelesky, G. Machado, J. Dupont, J. Mol. Catal. A: Chem., 2006, 252,. 212-218. 

[9] L. Ma, Q. Peng, D. He, Catal. Lett., 2009, 130, 137-146.

[10] C. Liu, X. Li, X. Wang, Catal. Commun., 2015, 69, 81-85.

[11] H. Firouzabadi, N. Iranpoor, M. Gholinejad, Tetrahedron, 2009, 65, 7079-7084.

[12] I. Ugi, A. Domling, B. Gruber, M. Almstetter, Croat. Chem. Acta., 1997, 70, 631-647.

[13] R. Armstrong, A. Combs, P. Tempest, D. Brown, T. Keating, Acc. Chem. Res., 1996, 29, 123-131.

[14] K.C. Nicolaou, T. Montagnon, S.A. Snyder, Chem. Commun., 2003, 5, 551-564.

[15] J.C. Wasilke, S.J. Obrey, R.T. Baker, G.C. Bazan, Chem. Rev., 2005, 105, 1001-1020.

[16] D.J. Ramon, M. Yus, Angew. Chem Int Ed., 2005, 44, 1602-1634.

[17] L.F, Tietze, Chem. Rev. 1996, 96, 115-136.

[18] Sh. Safaei, I. Mohammadpoor-Baltork, A.R. Khosropour, M. Moghadam, S. Tangestaninejad, V, Mirkhani, ACS Comb. Sci., 2013, 15, 141-146.

[19] M.P. Zhu, I. imiaki, Tetrahedron Lett., 1997, 38, 5301-2530. 

[20] X. Xiong, M. C., Pirrung, Org. Lett. 2008, 10, 1151-1154. 

[21] Y. Kobayashi, H. Kayahara, K. Tadasa, H. Tanaka, Bioorg. Med. Chem. Lett., 1996, 6, 1303-1308.

[22] C.J. Li, T.H. Chan, Tetrahedron, 1999, 55, 11149-1117.

[23] E. A. Kataev, M. R. Reddy, V. H. Reddy, New J. Chem., 2016, 40, 1693-1697.

[24] B. Sadeghi, P. Farokhi Nezhad, S. Hashemian, J. Chem. Res., 2014, 38, 54-57.

[25] Y. Li, Q. Jiang, K. Wang, B. Du, X. Wang, Tetrahedron Lett., 2013, 54, 7147-7150.

[26] Y. Sarrafi, E. Mehrasbi, S.Z. Mashalchi, Res. Chem. Intermed., 2015, 1, 1-13.

[27] B. Sadeghi, P. Farokhi Nezhad, S. Hashemian, J. Chem. Res., 2014, 1, 54-57.

[28] M. Shokouhimehr, T. Kim, S.W. Jun, K. Shin, Y. Jang, B.H. Kim, J. Kim, T. Hyeon, Appl. Catal. A., 2014, 476, 133-139.

[29] J. Safari, S.H. Banitaba, S. Dehghan Khalili, J. Mol. Catal. A: Chem., 2011, 335, 46-50.

[30] J. Safari, S.H. Banitaba, S. Dehghan Khalili, Ultrason. Sono Chem., 2013, 20, 401-407.

[31] J. Safari, S.H. Banitaba, S. Dehghan Khalili, Chinese. J. Catal., 2011, 32, 1850-1855.