Reusable Silica supported Perchloric acid and potassium bisulphate as green catalysts for thiocyanation of aromatic compounds under solvent free conditions

Document Type: Original Research Article

Authors

1 Department of Chemistry, Osmania University, Hyderabad (T.S)-500007 India

2 Department of Chemistry Osmania University Hyederabad -(T.S) 500007 India

3 Department of Chemistry Osmania University Hyderabad-(T.S) India

4 Department of Chemistry Osmania Univerity Hyderabad-(T.S) India

5 Department of Chemistry Osmania University Hyderabad -(T.S) India

6 School of Chemistry BITS, Pilani, Hyderabad

7 Department of Chemistry Osmania University Hyderabad-T.S India

Abstract

Reusable silica supported perchloric acid and potassium bisulphate have been prepared and explored as green catalysts for thiocyanation of aromatic compounds under conventional and solvent free microwave assisted conditions. The microwave assisted protocol exhibited remarkable rate accelerations and offered selective thiocyanation of aromatic and hetero aromatic compounds in good yields. Reaction times observed in conventional methods range of 2.0 to 6.0 hours, which reduced to only few minutes (1 to 3 min) in microwave assisted reactions. The developed protocols are also promising and comparable with the existing procedures. Prepared catalysts could be easily recycled for five time with a reproducible efficiency.

Graphical Abstract

Reusable Silica supported Perchloric acid and potassium bisulphate as green catalysts for thiocyanation of aromatic compounds under solvent free conditions

Keywords

Main Subjects


[1] S. Rezayati, F. S. Farahani, Z.  Hossaini, R. Hajinasiri, S.  A. Sharif Abad, Comb. Chem.High.Through. Screen. 2016, 19, 720-727

[2] K. Wilson, J.H. Clark, Pure Appl. Chem, 2000, 72, 1313-1319.

[3] S. Sajjadifar, S. Karimian, H. Noorizadeh, H. Veisi, Journal of Catalysts, 2013, 2013, Article ID 723903, http://dx.doi.org/10.1155/2013/723903

[4] L.Wu, C. Yang, C. Zhang, L. Yang, Lett. Org. Chem, 2009, 6, 234-236.

[5] S. Rostamizadeh, N. Shadjou, A.M. Amani, S. Balalaie, Chinese Chem. Lett, 2008, 19, 1151-1155.

[6] G.W. Breton, J. Org. Chem, 1997, 62, 8952- 8954.

[7] C. Ramesh, J. Banerjee, R. Pal, B. Das, Adv. Synth. Catal, 2003, 354, 557-559.

[8] M. Kaur, S. Sharma, P.M.S. Bedi, Chinese J. Catal, 2015, 36, 520–549 and references cited therein.

[9] A.T. Khan, T. Parvin, L.H. Choudhury, Synthesis, 2006, 2497-2502.

[10] A.T. Khan, L.H. Choudhury, S. Ghosh. J. Mol. Cat. A: Chemical, 2006, 255, 230–235.

[11] V.T. Kamble, V.S. Jamode, N.S. Joshi, A.V. Biradar, R.Y. Deshmukh, Tetrahedron Lett, 2006, 47, 5573–5576.

[12] M.A. Bigdeli, M.M. Heravi, G.H. Mahdavinia, J. Mol. Cat. A: Chemical, 2007, 275, 25–29

[13] M. Narasimhulu, T. Srikanth Reddy, K. Chinni Mahesh, P. Prabhakar, Ch. Bhujanga Rao, Y. Venkateswarlu, J. Mol. Cat. A: Chemical, 2007, 266, 114–117.

[14] B. Das, K. Damodar, N. Chowdhury, R. Aravind Kumar, J. Mol. Cat. A: Chemical, 2007, 274, 148–152.

[15] L.Q. Wu, Y.F. Wu, C.G. Yang, L.M. Yang, L.J. Yang, J. Braz. Chem. Soc, 2010, 211, 941-945 and references cited therein.

[16] G. Agnihotri, A.K. Misra, Tetrahedron Lett, 2006, 47, 3653.

[17] S. Rudrawar, R.C. Besra, A.K. Chakraborti, Synthesis, 2006, 2767.

[18] A. Agarwal, S. Rani, Y.D. Vankar, J. Org. Chem, 2004, 69, 6137.

[19] H.R. Shaterian, F. Shahrekipoor, M. Ghashang, J. Mol. Catal. A: Chemical, 2007, 272, 142–151.

[20] S. Pathak, K. Debnath, A. Pramanik, Beilstein J. Org. Chem., 2013, 9, 2344–2353.

[21] G. Mukut, J.H. van Tonder, B.C.B. Benzuidenhoudt, Iran. J. Chem. Chem. Eng, 2015, 34, 11-17.

[22] (a). J.L. Wood, Organic Reactions, New York: Wiley, 1967, 3, 240–266; (b). T.R. Kelly, M.H. Kim, A.D.M. Certis, J. Org. Chem, 1993, 58, 5855.

[23] R.G. Guy, In: S. Patai (Ed.), The Chemistry of Cyanates and their Thio Derivatives, Edited by John Wiley & Sons, New York, USA, 1977.

[24] J.S. Yadav, B.V.S. Reddy, S. Shubashree, K. Sadashiv, Tetrahedron Lett, 2004, 45, 2951-2954.

[25] (a) R. Riemschneider, J. Am  Chem Soc, 1956, 78, 844; (b). R. Riemschneider, F. Wojahn. G. Orlick, J. Am. Chem. Soc., 1951, 73, 5905-5907.

[26] Z.H. Zhang, L.S. Liebeskind, Org. Lett, 2006, 8, 4331-4333.

[27] (a) T. Billard, B.R. Langlois, M. Medebielle, Tetrahedron Lett., 2001, 42, 3463-3465; (b). T. Nguyen, M. Rubinstein, C. Wakselman, J. Org. Chem, 1981, 46, 1938-1940; (c). P. A. Grieco, Y. Yokoyama, E. Williams, J. Org. Chem, 1978, 43, 1283-1285.

[28] Y.T. Lee, S.Y. Choi, Y.K. Chung, Tetrahedron Lett, 2007, 48, 5673-5677.

[29] D.L. Mackinnon, P.A. Farrel, Environ. Toxicol. Chem, 1992, 11, 1541–1548.

[30] G.M. Rajendra, L. Jinfang, C. Andreas, F.T. Cathy, H. Min. Micheal, Y. Clarissa, G.M.P. John, C.M. Richard, M. M. Robert, Carsinogenesis. 1995, 16, 399–412.

[31] (a). Wu. Guaili, Liu. Qiang, Shen. Yinglin, Wu. Wentao, Wu. Longmin, Tetrahedron Lett, 2006, 46, 5831–5834; (b). A. Khazaei, M.A. Zolfigol, M. Mokhlesi, F.D. Panah, S. Sajjadifar, Helvetica Chimica Acta, 2012, 95, 106; (c). S. Sajjadifar, O. Louie, Journal of Chemistry, 2013, 6, Article ID 674946; (d). M. Chakrabarty, S. Sarkar, Tetrahedron Lett, 2003, 44, 8131–8133; (e) V. Nair, T.G. George, L.G. Nair, S.B. Panicker, Tetrahedron Lett. 1999, 40, 1195-1196; (f). U.S. Mahajan, K.G. Akamanchi, Syn. Comm, 2009, 39, 2674–2682.

[32] (a). B. Akhlaghinia, A.R. Pourali, M. Rahmani, Syn. Comm, 2012, 42, 1184–1191; (b) S. Sajjadifar, S. Karimian, H. Noorizadeh, H. Veisi, J. Catalysts., 2013, 7,  Article ID 723903; (c) D. Khalili, Chinese Chem. Lett, 2015, 26, 547–552; (d) B. Mokhtari, R. Azadi, S. Rahmani-Nezhad, Tetrahedron Lett, 2009, 50, 6588–6589; (e). M.A. Zolfigol, A. Khazaei, M. Mokhlesi, H.Vahedi, S. Sajjadifar, M. Pirveysian, Phosp. Sulf. Silicon. Relat. Elem., 2012, 187, 295–304; (f). R.G.R. Bacon, R.G. Guy, J Chem Soc, 1960, 318–324.

[33] (a). X.Q. Pan, M.Y. Lei, J.P. Zou, W. Zhang, Tetrahedron Lett, 2009, 50, 347–349; (b). Kobra Nikoofar, Samareh Gorji, Phosphorus Sulfur and Silicon Relat. Elem, 2015, 190, 1138–1145; (c). Y.L.N. Murthy, B. Govindh, B.S. Diwakar, K. Nagalakshmi, R. Venu, J. Iran. Chem. Soc, 2011, 8, 292–297; (c). J.S. Yadav, B.V.S. Reddy, A.D. Krishna, Ch.S. Reddy, A. Narsaish, Synthesis, 2005, 961–964; (d). B. Das, A. Satya Kumar, Syn. Comm, 2010, 40, 337–341; (e). M.A. Karimi Zarchi, R. Banihashemi, Journal of Sulfur Chem, 2014, 35, 458–469.

[34] (a) N. Iranpoor, H. Firouzabadi, R. Azadi, Tetrahedron Lett, 2006, 47, 5531–5534; (b) N. Iranpoor, H. Firouzabadi, D. Khalili, R. Shahin, Tetrahedron Lett, 2010, 51, 3508–3510; (c). L.Wu, S.C. Liqiang, X. Wang, F. Yan, Phosphorus, Sulfur and Silicon Relat. Elem, 2011, 186, 304–310; (d) Y. Kita, T. Takada, S. Mihara, B.A. Whelan, H. Tohma, J. Org. Chem, 1995, 60, 7144-7148.

[35] (a). S. Jana, Shouvik Chattopadhyay, Inorganic Chem. Comm, 2013, 35, 160–163; (b). L. Fotouhi, K. Nikoofar, Tetrahedron Letters, 2013, 54, 2903–2905; (c). P. Krishnan, V.G. Gurjar, J Appl. Electro. Chem, 1995, 25, 792–796; (d). V.A. Kokorekin, V.L. Sigacheva, V.A. Petrosyan, Tetrahedron Letters, 2014, 255, 4306–4309; (e). A. Gitkis, J.Y. Becker, J Electro anal. Chem, 2006, 593, 29–33; (f). A. Gitkis, J.Y. Becker, Electro chem. Acta., 2010, 55, 5854–5859.

[36] (a) V. Sudhakar Chary, G. Krishnaiah, M. Satish Kumar, K.C. Rajanna, Phosphorus Sulfur and Silicon Relat. Elem, 2015, 190, 1146–1153.; (b) N. Venkatesham, K. Rajendar Reddy, K.C. Rajanna, P. Veerasomaiah, J. Sulfur Chem, 2014, 35, 606–612.

[37] I.P. Beletskaya, A.S. Sigeev, A.S. Peregudov, P. Petrovskii, Mendeleev Commun., 2006, 16, 250-251.

[38] (a) E.R. Nezhad, S. Karimian, S. Sajjadifar, Journal of Sciences, Islamic Republic of Iran., 2015, 26(3), 233 – 240.;(b) M. Barbero, I. Degani, N. Diulgheroff, S. Dughera, R. Fochi, Synthesis, 2001, 585-590.

[39] Z.N. Siddiqui., Arabian J. Chem., 2015,( In Press),

 doi.org/10.1016/j.arabjc.2015.06.013

[40] (a). F.C. Küpper, M.C. Feiters, B. Olofsson, T. Kaiho, S. Yanagida, M.B. Zimmermann, L.J. Carpenter, G.W. Luther, Z. Lu, M. Jonsson, L. Kloo, Angew. Chem. Int. Ed., 2011, 50, 11598–11620; (b). Y. Sulfab, J. Inorg. Nucl. Chem, 1976, 38, 2271-2274; (c). Y. Sulfab, A.L. Abu-Shadi, Inorg. Chem. Acta, 1977, 21, 115; (d). Y. Kasim, Y. Sulfab, Inorg. Chem. Acta, 1977, 24, 247; (e). F.R. El-Eziri, Y. Sulfab, Inorg.Chem. Acta, 1977, 25, 15.

 [41] (a) P. Anastas, J. Warner, In Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998; (b). V. Polshettiwar, R.S. Varma, Chem. Soc. Rev, 2008, 37, 1546; (c) M. Kidwai, Pure Appl. Chem., 2001, 73, 147.

[42] P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron, 2001, 5, 9225–9283.

[43] (a). R.S. Varma, Green Chem, 1999, 1, 43–55; (b) P. Vivek, R.S. Varma, Chem. Res, 2008, 41, 629–639.

[44] C. Oliver Kappe, Angew. Chem. Int. Ed, 2004, 43, 6250–6284.

[45] C.R. Strauss, R.W. Trainor, Aust. J. Chem, 1995, 48, 1665–1692.