Document Type: Original Research Article

Authors

1 chemistry department, faculty of physics and chemistry, alzahra university, vanak, Tehran, .Iran

2 chemistry department, faculty of physics and chemistry, alzahra university, Tehran, Iran

Abstract

ZrOCl2.8H2O@nano SiO2 has been synthesized for the first time via a simple procedure and characterized by SEM (scanning electron microscopy), FT-IR, and EDX (energy-dispersive X-ray) techniques. The efficiency of the prepared nanostructure has been explored for the synthesis of benzimidazoles via the condensation reaction of orthoesters and diamines at 60 °C under solvent-free conditions. The successful synthesis of benzoxazole has also been explored through the condensation of orthoesters with 2-aminophenol in water media at room temperature. The recovery and reusability of the nanocatalyst has also been examined via 4 runs without activity loss. Partial short reaction times, high yields of products, mild reaction conditions in the absence of any hazardous solvent, and reusability of the nanocatalyst are noteworthy advantages of this method.

Graphical Abstract

Keywords

Main Subjects

[1] P. Rodgers, Nanoscience and Technology, Collection of Reviews from Nature Journals, World Scientific, Singapore, 2009.

[2] V. Ponec, G.C. Bond (Eds.), Catalysis by Metals and Alloys (Vol. 95) in: B. Delmon, J.T. Yates, Studies in Surface Science and Catalysis, Elsevier, Amsterdam, 1995.

[3] J.R.H. Ross, Heterogeneous Catalysis: Fundamentals and Applications, elsvier, 2012.

[4] A. Zecchina, S. Bordiga, E. Groppo, Selective Nanocatalysts and Nanoscience: Concepts for Heterogeneous and Homogeneous Catalysis, Wiley Publication, 2011.

[5] S, Suib, New and Future Developments in Catalysis, Catalysis by Nanoparticles, Elsevier, 2013.

[6] G. Blanitam, M.D. Lazar, Micro Nanosyst., 2013, 5, 138-146.

 [7] J.A. Gladysz, Chem. Rev., 2002, 102, 3215-3216.

[8] M.R. Deluca, S.M. Kervin, Tetrahedron Lett., 1997, 38, 199-202.

[9] Y.Sato, M.Yamada, S.Yoshida, T.Soneda, M.Ishikawa, T.Nizato, K. Suzuli, F. Konno, J. Med. Chem., 1998, 41, 3015-3021.

[10] C.Wang, J.Widon, F.Petronijevic, J.C.Burnett, J.E. Nuss, S. Bavari, R. Gussio, P. Wipf, Heterocycles, 2009, 79, 487-520.

[11] A.D. Rodriguez, C. Ramirez, I.I. Rodriguez, E. Gonzalez, Org. Lett., 1999, 1, 527-530.

[12] J.P. Davidson, E.J. Corey, J. Am. Chem. Soc., 2003, 125, 13486-13489.

[13] J. Nishiu, M. Ito, Y. Ishida, M. Kakutani, T. Shibata, M. Matsushita, M. Shindo, Diabetes Obes. Metab., 2006, 8, 508-516.

[14] D.C. Tully, H. Liu, P.B. Alper, A.K. Chatterjee, R. Epple, M.J. Roberts, J.A. Williams, K.T. Nguyen, D.H. Woodmansee, C. Tumanut, J. Li, G. Spraggon, J. Chang, T. Tuntland, J.L. Harris, D.S. Karanewsky, Bioorg. Med. Chem. Lett., 2006, 16, 1975-1980.

[15] L. Leventhal, M.R. Brandt, T.A. Cummonts, M.J. Piesla, K.E. Rogers, H.A. Harris, Eur. J. Pharmacol., 2006, 553, 146-148.

[16] J. Easmon, G. Pürstinger, K.S. Thies, G. Heinisch, J. Hofmann, J. Med. Chem., 2006, 49, 6343-6350.

[17] J.A. Grobler, G. Dornadula, R.M. Rice, A.L. Simcoe, D.J. Hazuda, M.D. Miller, J. Biol. Chem., 2007, 282, 8005-8010.

[18] I.H. Leaver, B. Milligam, Dyes Pigm. 1984, 51, 109-144.

[19] S. Budow, M. Kozlowska, A. Gorska, Z. Kazimierczuk, H. Eickmeier, P. La Colla, G. Gosselin, F. Seela, ARKIVOC, 2009, iii, 225-250.

[20] B. Guruswamy, R. Arul, Der. Pharma. Chemica., 2011, 3, 483-486.

[21] Y. Kawashita, N. Nakamichi, H. Kawabata, M. Hayashi, Org. Lett., 2003, 5, 3713-3715.

[22] R. Varala, A. Nasreen, R. Enugala, S.R. Adapa, Tetrahedron Lett., 2007, 48, 69-72.

[23] R. Shelkar, S. Sarode, J. Nagarkar, Tetrahedron Lett., 2013, 54, 6986-6990.

[24] H. Alinezhad, M. Zare, Bulg. Chem. Commun., 2014, 46, 347- 352.

[25] D. Kathirvelan, P. Yavarag, K. Babu, A.S. Nagarajan, B.S. Reddy, Indian J. Chem., 2013, 52B, 1152-1156.

[26] B. Sammaiah, D. Sumalatha, G.S.S. Reddy, M, Rajeswari, L.N. Sharada, Int. J. Ind. Chem., 2012, 3, 11-14.

[27] F. Shirini, M. Mamaghani, M. Seddighi, Res. Chem. Intermed., 2015, 41, 5611-5619.

 [28] I. Mohammadpoor-Baltork, A.R. Khosropour, S.F. Hojati, Catal. Commun., 2007, 8, 1865-1870.

[29] Zh. Zhang, T. Li, J. Li, Monatsh. Chem., 2007, 138, 89-94.

[30] S. Khaksar, A. Heydari., M. Tajbakhsh., S.M. Vahdat., J. Fluorine Chem., 2010, 131, 1377-1381.

[31] G. Evindar, R.A. Batey, J. Org. Chem., 2006, 71, 1802-1808.

[32] P. Saha, T. Ramana, N. Purkait, M.A. Ali, R. Paul, T. Punniyamurthy, J. Org. Chem., 2009, 74, 8719-8725

[33] C. Praveen, K.H. Kumar, D. Muralidharan, P.T. Perumal, Tetrahedron, 2008, 64, 2369-2374.

[34] R.S. Varma, Green Chem., 1999, 1, 43-55.

[35] H. Sharghi, M. Aberi, M.M. Doroodmand, Mol. Divers., 2015, 19, 77-85.

[36] Y. Cao, H. Zhou, J. Li, Renew. Sust. Energ. Rev., 2016, 58, 871-875.

[37] K. Nikoofar, S. Gorji, J. Sulfur Chem., 2015, 36, 178-186.

[38] M. Haghighi, K. Nikoofar, J. Suadi Chem. Soc., 2016, 20, 101-106.

[39] K. Nikoofar, M. Haghighi, M. Lashanizadegan, Z. Ahmadvand, J. Taibah Univ. Sci., 2015, 9, 570-578.

[40] Kh. Ghanbari, K. Nikoofar, Monatsch. Chem. 2014, 145, 1867-1871.

[41] K. Nikoofar, Kh. Ghanbari, Monatsch. Chem., 2015, 146, 2021-2027

[42] M. Haghighi, K. Nikoofar, Iran. J. Catal., 2015, 5, 57-63.

[43] K. Nikoofar, Sh. Moazzez Dizgarani, J. Suadi Chem. Soc., 2015, doi:10.1016/j.jscs.2015.11.006.

[44] K. Nikoofar, Z. Khalili, Z. Naturforsch., 2016, 71, 31-36.

[45] K. Nikoofar, M. Haghighi, Z. Khademi, Arab J. Chem., 2016, doi:10.1016/j.arabjc.2016.01.013.

[46] S. Musić, N. Filipović-Vinceković; L. Sekovanić,Braz. J. Chem. Eng., 2011, 28, 89-94.

[47] M.M. Heravi, N. Montazeri, M. Rahmizadeh, M. Bakavoli, M. Ghassemzadeh, J. Chem. Res., 2000, 584-585.

[48] S.M. Vahdat, S. Ghafouriraz, S. Bagheri, J. Chem. Sci., 2014, 126, 579-585.