Document Type: Original Research Article

Authors

1 Iran Polymer and Petrochemical Institute

2 Karaj Branch, Islamic Azad University

Abstract

Density-functional-based and ab initio calculations were implemented at different computational levels to estimate the binding energy of Zn2+ ion adsorbed on the available sites of a silicate MEL-type adsorbent. B3LYP and MP2 were used in combination with the 6-31G*, 6-31+G*, LanL2DZ, 6-311+G*, and Def2-TZVP basis sets. The zinc cation was found to preferentially occupy the 6MR sites followed by the cage-like positions. Nevertheles, all of the available sites exhibited negative amounts for the Gibbs free energy and enthalpy of adsorption with the corresponding population-averaged values of –160.84 and –169.53 kcal/mol at the B3LYP/Def2-TZVP level. Overall, the B3LYP/LanL2DZ method illustrated the highest deviation from the others both in trends and absolute values of binding energy. While the absolute binding energy ranged from 131.23 to 230.79 kcal/mol over different sites, the population-averaged binding energies altered from 146.08 to 162.54 kcal/mol depending on the method employed.

Graphical Abstract

Keywords

Main Subjects

[1] S.P. Mishra, Curr. Sci., 2014, 107, 1133–1148.

[2] G.O. El-Sayed, H.A. Dessouki, S.S. Ibrahiem, Malays. J. Anal. Sci., 2011, 15, 8–21.

[3] R.W. Gaikwad, D.V. Gupta, Appl. Ecol. Env. Res., 2008, 6, 81–89.

[4] K. Jiang, T.-h. Sun, L.-n. Sun, H.-b. Li, J. Env. Sci., 2006, 18, 1221–1225.

[5] S. Lukman, M.H. Essa, N.D. Mu`azu, A. Bukhari, C. Basheer, J. Environ. Sci. Technol., 2013, 6, 1–15.

[6] M. Minceva, L. Markovska, V. Meshko, Macedonian J. Chem. Chem. Eng., 2007, 26, 125–134.

[7] J. Perić, M. Trgo, N. Vukojević Medvidović, Water Res., 2004, 38, 1893–1899.

[8] K. Northcott, H. Kokusen, Y. Komatsu, G. Stevens, Sep. Sci. Technol., 2006, 41, 1829–1840.

[9] G.M. Zhidomirov, A.A. Shubin, V.B. Kazansky, R.A. van Santen, Theor. Chem. Acc., 2005, 114, 90–96.

[10] M. Ghashghaee, M. Ghambarian, Z. Azizi, Struct. Chem., 2015, 27, 467–475.

[11] M.A. Barakat, Res. J. Env. Sci., 2008, 2, 13–22.

[12] M. Golomeova, A. Zendelska, K. Blazev, B. Krstev, B. Golomeov, Int. J. Eng. Res. Technol., 2014, 3, 1029–1035.

[13] H.-W. Huang, The Assessment of Copper and Zinc Removal from Highway Stormwater Runoff using Apetite II, MSc thesis, Oregan State University, 2012.

[14] A.H. Ören, A. Kaya, Journal of Hazardous Materials, 2013, 131, 59–65.

[15] K. Rout, M. Mohapatra, B.K. Mohapatra, S. Anand, Int. J. Eng., Sci. Technol., 2009, 1, 106–122.

[16] T. Budnyak, V. Tertykh, E. Yanovska, Mater. Sci., 2014, 20, 177–182.

[17] A. Buasri, P. Yongbut, N. Chaiyut, K. Phattarasirichot, Chiang Mai J. Sci., 2008, 35, 56–62.

[18] A. Kozawa, J. Inorg. Nucl. Chem., 1961, 21, 315–324.

[19] J.S. Kim, J.C. Park, J. Yi, Sep. Sci. Technol., 2000, 35, 1901–1916.

[20] L. Giraldo, J.C. Moreno-Piraján, Mater. Res., 2013, 16, 745–754.

[21] L.B. Khalil, A. Attia, T. El-Nabarawy, Adsorpt. Sci. Technol., 2001, 19, 511–523.

[22] R. Kumar, M.A. Barakat, Y.A. Daza, H.L. Woodcock, J.N. Kuhn, J. Colloid Interf. Sci., 2013, 408, 200–205.

[23] M. Sarkar, P.K. Datta, Indian J. Chem. Technol., 2002, 9, 245–250.

[24] W.H. Leung, A. Kirnaro, Virginia J. Sci., 1998, 49.

[25] R. Shawabkeh, A. Al-Harahsheh, A. Al-Otoom, Sep. Purif. Technol., 2004, 40, 251–257.

[26] A.T. Sdiri, T. Higashi, F. Jamoussi, Int. J. Environ. Sci. Technol., 2014, 11, 1081–1092.

[27] J.-S. Kim, S. Chah, J. Yi, Korean J. Chem. Eng., 2000, 17, 118–121.

[28] K.S. Smith, Metal Sorption on Mineral Surfaces: An Overview with Examples Relating to Mineral Deposits, in: G.S. Plumlee, M.J. Logsdon (Eds.) Reviews in Economic Geology, Society of Economic Geologists, 1999.

[29] O. Terasaki, T. Ohsuna, H. Sakuma, D. Watanabe, Y. Nakagawa, R.C. Medrud, Chem. Mater., 1996, 8, 463–468.

[30] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, Revision A.7, Gaussian Inc., Pittsburgh PA, 1998.

[31] A.D. Becke, Phys. Rev. A, 1988, 38, 3098–3100.

[32] A.D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.

[33] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B, 1988, 37, 785–789.

[34] M. Head-Gordon, J.A. Pople, M.J. Frisch, Chem. Phys. Lett., 1988, 153, 503–506.

[35] S. Sæbø, J. Almlöf, Chem. Phys. Lett., 1989, 154, 83–89.

[36] P.C. Hariharan, J.A. Pople, Mol. Phys., 1974, 27, 209–214.

[37] M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, M.S. Gordon, D.J. DeFrees, J.A. Pople, J. Chem. Phys., 1982, 77, 3654–3665.

[38] T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.V.R. Schleyer, J. Comput. Chem., 1983, 4, 294–301.

[39] M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys., 1984, 80, 3265–3269.

[40] A.D. McLean, G.S. Chandler, J. Chem. Phys., 1980, 72, 5639–5648.

[41] K. Raghavachari, G.W. Trucks, J. Chem. Phys., 1989, 91, 1062–1065.

[42] T.H. Dunning Jr., P.J. Hay, in: H.F. Schaefer III (Ed.) Modern Theoretical Chemistry, Plenum, New York, 1976, pp. 1–28.

[43] P.J. Hay, W.R. Wadt, J. Chem. Phys., 1985, 82, 270–283.

[44] P.J. Hay, W.R. Wadt, J. Chem. Phys., 1985, 82, 299–310.

[45] W.R. Wadt, P.J. Hay, J. Chem. Phys., 1985, 82, 284–298.

[46] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.

[47] D. Feller, J. Comput. Chem., 1996, 17, 1571–1586.

[48] F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057–1065.