Application of carbon ceramic modified electrode with prussian blue for electrocatalytic oxidation of nitrite ion

Document Type: Original Research Article

Authors

1 marand

2 Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697 Tehran, Iran

Abstract

A novel chemically modified electrode containing Prussian blue complex was achieved on the surface of glass carbon electrode by sol-gel technique. The electrochemical behavior of modified electrode was characterized by cyclic voltammetry in detail. The film electrode obtained was very stable and exhibited electrocatalytic response for oxidation of nitrite. Results showed at bare GC electrode, a small oxidation peak current was observed at about 740 mV and a well-formed sharp catalytic oxidation peak at about 600 mV was observed at Prussian blue complex modified electrode. The transfer coefficient (α) for electrocatalytic oxidation of nitrite and the diffusion coefficient of this substance under the experimental conditions were also investigated.

Graphical Abstract

Application of carbon ceramic modified electrode with prussian blue for electrocatalytic oxidation of nitrite ion

Keywords

Main Subjects


[1] R.W. Murray, in: A.J. Bard (Ed.), Chemically Modified Electrodesin Electroanalytical Chemistry, vol.13, Marcel Dekker, New York, 1984, 191.

[2] S.M. Golabi, H.R. Zare, M. Hamzehloo, Electroanalysis, 2002, 14, 611-618.

[3] H. R. Zare, S.M. Golabi, J. Electroanal. Chem., 1999, 646. 14-23. 

[4] S.M. Golabi, H.R. Zare, J. Electroanal. Chem., 1999, 465, 168.

[5] J.M. Zen, A.S. Kumar, D.M. Tsai, Electroanalysis, 2003, 15, 1073.

[7] B. Agboola, K. Ozoemen, T. Nyokong  , J. Electrochim Acta,2006 ,51 , 6470.

[8] B. Agboola, T. Nyokong, Anal.Chim. Acta, 2007, 587, 116.

[9] I.G. Casello, M.R. Guascito, Electroanalysis, 1997, 9, 1381.  

[10] P.R. Roy, T. Okajima, T. Ohsaka, J. Electroanal. Chem., 2004, 561, 75.

[11] G. Moreno, F. Pariente, E. Lorenzo, Anal. Chim. Acta, 2000, 420, 29.

[12] H.R. Zare, S.M. Golabi, J. Solid State Electrochem., 2000, 4, 87.

[13] B. Nalini, S.S. Narayanan, Anal. Chim. Acta, 2000, 405, 93.

[14] E. Miland, A.J. Miranda Ordieres, P. Tu˜n´on Blanco, M.R. Smyth,C.O´ . Fa´ga´in, Talanta, 1996, 43, 785.

[15] O. Dvorak, M. Keith De Armond, J. Phys. Chem., 1993, 97, 2646.

[16] K. Itaya, I. Uchida, V. D. Neff, Acc. Chem. Res, 1986, 19,162.

[17] M. Kaneko, S.Hara, A. Yamada, J.Electroanal. Chem, 1985, 194, 165.

[18] C. Mingotaud, C. Lafuente. J. Amiell, P. Delhaes, Langmuir, 1999, 15, 289.

[19] P.Kulesza, K. Miecznikowski, M. Chojak, M. A. Malik, S. Zamponi, R. Marassi., Electrochem. Acta, 2001, 46, 1371.

[20] D. M. De Longchamp, P. T. Hammod, Adv. Funct. Mater, 2004, 4, 224.

[21] L. Cui, J. Zhu, X. Meng, H. Yin, X. Pan, S. Ai, Sens . Actuators B, 2012, 161, 641.

[22] M. Najafi, B. Sobhan manesh, J.Sci. Res., 2012, 7, 1-14.

[23] C. Berger, Z. M. Song, X. B.Li, Science, 2006, 312, 1191.

[24] M.R. Majidi, A. Jouyban, K. Asadpoure-Zeynali, Electrochemica Acta, 2007, 52, 6248.

[25] J. N. Soderberg, A.C. Co, A.H. Sirk, V. I. Biss, J. Phys. Chem B, 2006, 110,1041.

[26] J.J. Ruiz, A. Aldaz, M. Domı´nguez, Can. J. Chem., 1977, 55, 2799.

[27] A.J. Bard, L.R. Faulkner, Electrochemical methods, Fundamentals and Applications, Wiley, New York, 1980.