Document Type: Original Research Article


Department of Chemistry, Faculty of Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran


An efficient synthesis of trialkyl (E)-3-(3-Oxo-2-3,4-dihydro-2-(1H)-quinoxalinylidene)-prop-1-ene-1,2,3-tricarboxylate derivatives via a simple three-component reaction between benzene-1,2-diamines with dialkyl acetylenedicarboxylates in the presence of K2CO3-PEG catalytic system at 100 oC was reported. The desired products were obtained in excellent yields (88-92%). Various benzene-1,2-diamines, and dialkyl acetylendicarboxylate were used in the traditional method.
Quinolines are major classes of heterocyclic compounds, which have attracted considerable attention from chemists for their large broad biological activities and amazing physical properties. Furthermore, the synthesis of quinoxalines and their derivatives has received much attention from organic and medicinal chemists. As part of our current studies on the development of new routes to synthesize quinoxaline systems. The corresponding quinoxalines are useful building blocks for the construction of complex quinoxaline derivatives

Graphical Abstract


Main Subjects

[1] J. M. Harris, Eds. Poly(ethylene Glycol) Chemistry, Biotechnological Applications; Plenum Press: New York, 1992.

[2] J. M. Harris, S. Zalipsky, Polyethylene Glycol: Chemistry and Biological Application; ACS Books: Washington, DC, 1997.

[3] V. V. Kouznetsov, D. R. Merchan Arenas, A. R. Romero Bohorquez, Tetrahedron Lett., 2008, 49, 3097-3100.

[4] E. Colacino, L. Villebrun, J. Martinez, F. Lamaty, Tetrahedron., 2010, 66, 3730-3735.

[5] J. Marco-Contelles, E. Perez-Mayoral, A. Samadi, M. D. Carreiras, E. Soriano, Chem. Rev., 2009, 109, 2652-2671.

[6] J. L. McCormick, T. C. McKee, J. H. Cardellina, M. R. Boyd, J. Nat. Prod., 1996, 59, 469-471.

[7] K. C. Majumdar, S. K. Chattopadhyay, Heterocycles in Natural Product Synthesis; Wiley-VCH GmbH &. KGaA:Weinheim, 2011.

[8] M. Shiri, M. A. Zolfigol, H. G. Kruger, Z. Tanbakouchian, Chem. Rev., 2010, 110, 2250-2293.

[9] G. R. Humphrey, J. T. Kuethe, Chem. Rev., 2006, 106, 2875-2911.

[10] I. Yavari, A. Mirzaei, L. Moradi, A. Mokhtarporiani-Sanandaj, Synth. Commun., 2007, 37, 1195–1200.

[11] M. Piltan, L. Moradi, G. Abasi, S.A. Zarei, Beilstein J. Org. Chem., 2013, 9, 510-515.

[12] L. Moradi, M. Piltan, G. Abasi, Helv. Chim. Acta. 2014, 97,  646-451.

[13] M. Piltan, Chin. Chem. Lett., 2014, 25 1507-1510.

[14] M. Piltan, I. Yavari, L. Moradi, S.A. Zarei, J. Korean Chem. Soc., 2012, 56, 316-321.

[15] M. Piltan, L. Moradi, H. Salimi, K. Zargoosh, S.A. Zarei, Comb. Chem. High. T. Scr., 2012, 15, 571-575.

[16] H. Susuchitzky, B. J. Wakefield, R. A. Whittaker, J. Chem. Soc., Perkin Trans., 1, 1975, 401-403.