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Abstract 
In the present paper, informatics-aided quantitative structure activity relationship 

(QSAR) models using genetic algorithm-partial least square (GA-PLS), genetic 

algorithm-Kernel partial least square (KPLS), and Levenberg-Marquardt artificial 

neural network (LM ANN) approach were constructed to access the antimalarial 

activity (pIC50) of 2,5-diaminobenzophenone derivatives. Comparison of errors and 

correlation coefficients was obtained by the models as it illustrated that the LM ANN 

approach works with a high correlation coefficient and low prediction error. This 

model was applied to the prediction of pIC50 values of 2,5-diaminobenzophenone 

derivatives. 

Keywords: P. falciparum malaria; antimalarial compounds; 2,5-

diaminobenzophenones; QSAR. 

 

Introduction 

As a parasitic (sporozite) disease, 

malaria with mortality rate of 25% is a 

major worldwide health problem [1]. In 

2011, 216 million cases of this disease 

were reported [2,3]. A parasite which is 

passed through a human to another via 

mosquitoes Anopheles infection causes 

malaria. Also, mosquitoes in climates 

with specific temperatures can carry 

malaria [2]. Recently, the antimalarial 

activity of 2,5-diaminobenzophenone 

based compounds with the farnesyl 

transferase inhibition effects was 

reported [4]. Due to their activity 

against multi-drug resistant, the 

experimental and theoretical aspects of 

this particular compounds need to be 

investigated. So, developing QSAR 

models with informatics-aided drug-

design has a key role in the 

understanding of the effectiveness and 

mechanism evaluation of new drug 

compounds [5-8]. This paper aimed to 

develop a QSAR model for 2,5-

diaminobenzophenone derivative. 

Following the variables selection, the 

linear and nonlinear regressions (e.g. 

PLS and KPLS) and a neural network 
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(L-M ANN) were employed to 

construct the QSAR models. 

Experimental  

Materials and Methods  

 Data set  

Typically, IC50 is used to calculate the 

antagonist drug efficiency. It exhibits 

upon what  amount  of  a  ca refu l 

substance/molecule is alluring on 

restrain 50% biological progression. 

Also, its quantitative measure show 

what amount of a specific material 

(drug etc…) is required for a biological 

process hindering. In this study, to 

indicate a greater potency, IC50 was 

converted to pIC50 scale (-log IC50). 

 Descriptor generation 

The data set used in this work is pIC50 

of 92 derivatives of 2,5-

diaminobenzophenones molecules 

obtained from the literature [9] which is 

shown in Table 1. 

HyperChem (Version 7.0 Hypercube, 

Inc) was used to draw the molecular 

structures.  Streamline AM1 method 

was used to optimize the structures. To 

calculate the molecular descriptor the 

Dragon 2.1 software was used. 

Data pretreatment 

All of the constant variables were 

removed by analyzing the calculated 

descriptors. To choose the collinear 

descriptors (r > 0.9), the existence of 

redundancy in the data matrix was 

checked. A set of collinear descriptors 

with a highest correlation was retained 

and the other descriptors were deleted. 

The descriptors were set in an n   m 

data matrix (D), where n = 92 and 

m=1042. Note that n and m are the 

number of the compounds and the 

descriptors, respectively. 

 
Table 1. The data set, structure and the corresponding observed pIC50 values 

Compound Structure  PIC50 

Compound 

 

PIC50 

1 R 5.57 

2 -H 5.24 

3p -NO2 5.19 

4v -CHO 4.4 

5 -COOCH3 6.00 

6 -CF3 5.24 

7p -Cl 5.26 

8v -Br 5.49 

9 -NH2 5.26 
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10 -CH C(CN)2  
4.37 

11 -CH3 5.85 

12 -O-CH3 5.89 

13p -CH2-CH3 5.92 

14v -CH(CH3)2 5.92 

15 -C(CH3)3 5.52 

16 -O-CH2-CH3 6.07 

17 -O-(CH2)3-CH3 5.96 

18p -O-(CH2)2-CH3 6.47 

Compound 

 

PIC50 

19v 
 

5.05 

20 

 

5.47 

21 
 

5.6 

22 
 

5.89 

23v 

 

5.62 

24p 

 

6.46 

25 

 

6.51 

26 
 

6.00 

27 

 

6.92 

28v 

 

4.62 
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29p 

 

4.64 

Compound 

 

PIC50 

30 
 

6.38 

31 

 

6.00 

32v 

 

6.70 

33 

 

6.92 

34 

 

7.06 

35 

 

7.07 

36p 

 

6.52 

37 
O

 

6.89 

38v O

 

6.52 

39 
O

 

6.12 

40 
O

CF3

 

6.68 

41p 
S

 

7.08 

42 
F

 

6.49 
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43 
Cl

 

6.84 

44v 
Br

 

6.9 

45 
NO2

 

7.12 

46p 
NO2

 

6.23 

47 
NO2

 

6.17 

48 
CF3

 

7.11 

49v 
NH2

 

6.59 

50 
CN

 

6.66 

51p 
O

 

7.17 

52 
O

O

 

6.77 

53v 
O

NH2

 

6.25 

54 
H
N

O

H

 

6.55 

55 
H
N

O

CH3

 

6.25 

56p 
S

O

O

 

7.43 
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57 
S

O

O

 

7.22 

58v 
S

NH2

O

O

 

6.7 

Compound 

O2N

O

NH

O

H
N

O

R

R  

PIC50 

59 

 

5.52 

60p 
Cl

 

5.6 

61 

 

5.6 

62 

 

6.11 

63v 

 

6.57 

64 
O

 

6.49 

65p 

 

6.82 

66 

 

6.19 

67v 
F

 

6.64 
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68 
Cl

 

7.19 

69p 
Br

 

7.15 

70v 

Br  

6.00 

71 CF3

 

7.33 

72 CF3

 

6.00 

73v NO2

 

5.85 

74p 

 

6.60 

75 

 

6.68 

76 

 

6.00 

77 

 

5.26 

78v 

 

6.51 

79 

OH  

5.48 
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80p 

O  

5.89 

81 

 

6.36 

82 

CF3  

7.21 

83v 

CF3  

6.2 

84 

F3C  

5.96 

85 

F  

6.36 

86p 

Cl  

6.89 

87v 

Br  

6.77 

88 

NO2  

5.85 

89 
NH

O

O

 

6.05 

90p 
NH2  

5.92 

91v 
NH

O

O

 

6.38 

92 
NH2  

6.24 

V: Validation set 

P: Prediction set 
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Descriptor selection by genetic 

algorithm  

Generally, in a chromosome, the 

absence or presence of a descriptor is 

coded as 0 or 1. Each string contains 

561 genes which represent the status of 

descriptors (presence or absence). For 

each GA runs, the population size was 

changed. In a typical GA run, the 

generation evaluating was stopped, 

when more than 80% of generations 

had the same fitness [10, 11]. The 

population size of this study was 30 

chromosomes.  

Nonlinear model 
Artificial neural network 

To investigate the feature sets, a three-

layer artificial neural network ANN 

with a back propagation sigmoid 

transfer function was employed. The 

model generation was made using the 

training set descriptors. In this sense, 

the validation sets were used for the 

network overtraining cut-off. The 

model predictivity was verified using 

validation set descriptors [12-14]. 

Result and Discussion  

Linear model  

Results of GA-PLS model 

Based on the highest square correlation 

coefficient (R2), the least root mean 

squares error (RMSE) and relative error 

(RE), the best mode is obtained. The 

GA-PLS model which was constructed 

in this study is based on the 21 

descriptors in 9 latent variables. In this 

model, for training and validation 

descriptors R2, RE and RMSE were 

(0.837, 0.741), (5.28, 7.39) and (0.041, 

0.096), respectively. The predicted 

pIC50 values for training and set 

descriptors are presented in Figure 1a. 

According to Figure 1a, in the PLS 

model, the number of latent variables is 

not more than the independent 

variables. This allows the model to 

extract more structural information 

from descriptors which minimize the 

prediction error. 

Nonlinear model 

Results of GA-KPLS model 

In this study a radial basis kernel 

function was used for nonlinear model 

construction,  

)/||exp(||),( 2 cyxyxK                     

(1) 

where 2rmc  [15]. Using GA-KPLS 

selection method, 13 descriptors in 5 

latent variables space were chosen. As 

a result, (0.872, 0.785), (4.79, 6.52) and 

(0.038, 0.084) were obtained as R2, RE 

and RMSE for training and test sets, 

respectively. The related GA-KPLS of 

the predicted and experimental values 

of pIC50 were shown in Figure 1b. The 

results of GA-KPLS model are superior 

to GA-PLS. It is interesting that higher 

R2 and lower RMSE and RE were 

obtained instead of linear model. 
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Figure 1. Plots of predicted pIC50 against the experimental values by (a) GA-PLS model and 

(b) GA-KPLS model 

 

Results of LM ANN model 

The ANN model was generated using 

three groups of descriptors: calibration, 

validation and prediction. The number 

of neurons in the hidden layer, learning 

rate and momentum were optimized. 

The retention relationship was obtained 

using a back-propagation feed-forward 

neural network [16]. In this algorithm, 

to obtain the minimum error function, 

training process diminishes the network 

outputs and the expected values 

difference [17]. In this work, we used a 

network with nine input layer, four 

hidden layer and one output layer. A 

bias unit with constant activation was 

connected to units in the hidden and 

output layers. The calibration RMSE 

was used to evaluate the performance 

of ANN algorithm. Optimum numbers 

were the number of neurons in the 

hidden layer with the minimum RMSE. 

Similar way was used to optimize the 

learning rate and momentum. R2 and 

RE values of calibration, prediction and 

validation were (0.952, 0.930, 0.894) 

and (3.61, 4.27, 5.69), respectively. 

RMSE of calibration, prediction and 

test sets were obtained as (0.029, 0.050, 

0.065), respectively. In this study, as 

compared to the counterparts in other 

models, higher R2 and lower RMSE 

and RE were obtained for validation set 

(Figure 2a,b). Figures 3a,b shows the 

residuals (pIC50
predicted − pIC50

experimental) 

instead of pIC50
experimental which is 

obtained by L-M ANN algorithm. 

Distribution of residual on the both side 

of zero line shows that the neural 

network algorithm works without a 

systematic error. Comparison between 

R2, RE and RMSE values of the 

developed algorithms shows the 

superiority of the L-M ANN model. 

Unlike the regression analysis, the 

neural network with a key strength has 

the potency of flexible mapping by 

manipulating implicitly. The results of 

this study shows the reproducibility of 

L-M ANN to pIC50 prediction of 2,5-

diaminobenzophenones derivatives. 
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Figure 2. Plot of predicted pIC50 obtained by L-M ANN against the experimental values (a) 

calibration and prediction sets of molecules and (b) for test (validation) set 

 

 
 

 Figure 3. Plot of residuals obtained by L-M ANN against the experimental pIC50 

values (a) training set of molecules and (b) for test set 

 

Model validation and statistical 

parameters 

To evaluate the predictivity of the 

developed algorithms, both the internal 

(LGO-CV)) and external (validation 

set) were used. For LGO-CV, a 

compound was removed and after 

training with the remained compounds, 

the discarded compound was predicted. 

This process was repeated for all 

compounds. The data set descriptors 

were distributed/divided into three sub-

data sets as calibration, prediction and 

test sets. The calibration and prediction 

sets were used for model generation 

and overfitting the network and 

validation set was used to evaluate the 

predictive power of external set [18-

20].  

In this work we used 54 

components in calibration set; 18 

components in prediction set and 20 

components in validation sets. So the 

predictive power of this study was 

measured as its ability to predict the 

partition of unknown derivatives of 2,5-

diaminobenzophenones. To evaluate 

the model predictive ability, each 
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predicted pIC50 value was compared 

with the experimental acidity constant 

[21-26].  

Conclusion 

As a conclusion, the GA-PLS, GA-

KPLS and L-M ANN algorithms were 

used to predict the antimalarial 

activities of 2,5-diaminobenzophenones 

derivatives. Low errors and high 

correlation coefficients indicated proper 

predictability of L-M ANN model. 

Applying the extended model to a 

dataset of 20 compounds demonstrates 

the reliability and accuracy of the 

model. Comparing three models 

revealed the superiority of the L-M 

ANN to predict the pIC50 of 2,5-

diaminobenzophenones derivatives. 
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