[1] G.K. Prasad, T.H. Mahato, P. Pandey, B. Singh, A. Saxena, K Sekhar, Micropor. Mesopor. Mater., 2007, 106, 256261.
[2] G.W. Wagner, O. Koper, E. Lucas, S. Decker, K.J. Klabunde, J. Phys. Chem., 2000, 104, 51185123.
[3] M. Winter, D. Hamal, X. Yang, H. Kwen, D. Jones, S. Rajagopalan, , K.J, Klabune, Chem Mater., 2006, 21, 23672374.
[4] M.E. Martin, R.M. Narske, K.J. Klabunde, Micropor. Mesopor. Mater., 2005, 83, 47-50.
[5] Sh. Rajagopalan, O. Koper, Sh. Decker, K. J. Klabunde, Chem. Eur. J., 2002, 8, 2602-2607.
[6] J.V. Stark, D.G. Park, I. Lagadic, K.J. Klabunde, Chem. Mater., 1996, 8, 1904-1912.
[7] Y. Li, O. Koper, K.J. Klabunde, Chem. Mater., 1992, 4, 323-330.
[8] O. Koper, K.J. Klabunde, U.S. Pat., 2000, 605, 7488-7490.
[9] S. Utampanya, K.J. Klabunde, J.R. Schlup, Chem. Mater., 1991, 3, 175-181.
[10] M. Joseph, H Tabata, T. Kawai, J. Appl. Phys., 1999, 2, 517-521.
[11] U. Ozgr, Y.I. Alivov, C Liu, A. Teke, M. A. Reshchikov, V. Avrutin, S. J. Cho, H. Mork, J. Appl. Phys., 2004, 98, 5610-5616.
[12] A. Ohtomo, A. Tsukazaki, Semicond. Sci. Technol., 2005, 20, 78-91.
[13] R. Schmidt, B. Rheinlnder, M. Schubert, D. Spemann, T. Butz, J. Lenzner, M.E. Kaidashev, M. Lorenz, A. Rahm, H.C. Semmelhack, M. Grundmann, Appl. Phys. Lett., 2003, 82, 2260-2262.
[14] F. Wang, B. Liu, Z. Zhang, S. Yuan, Physica E., 2009, 41, 879–882.
[15] S.P. Gubin, Yu. A. Koksharov, G.B. Khomutov, G.Y. Yurkov, Rus. Chem. Rev., 2005, 74, 489.
[16] Y. Liu, P. Liang, L. Guo, Talanta., 2005, 68, 25-30.
[17] J.G. Ekerdt, K.J. Klabunde, J.R. Shapley, J.M. White, J.T. Yates, J. Phys. Chem., 1988, 92, 61826188.
[18] D.B. Mawhinney, J.A. Rossin, K. Gehart, J.T. Yates, Langmuir., 1999, 15, 47894795.
[19] G.W. Wagner, P.W. Bartram, O. Koper, K.J. Klabunde, J. Phys. Chem., 1999, 103, 32253228.
[20] J.V. Stark, D.G. Park, I. Lagadic, K.J. Klabunde, Chem. Mater., 1996, 8, 19041912.
[21] Gamberini et al, U.S. Pat., 1998, 27, 14-20.
[22] P.W. Bartram, G.W. Wagner, U.S. Pat. 1997, 5 689-695.
[23] J. Praveen Kumar, G.K. Prasad, P.V.R.K. Ramacharyulu, P. Garg, K. Ganesan, Mater. Chem. Phys., 142 (2013) 484-490.
[24] Ch. Li, Y. Yin, H. Hou, N. Fan, F. Yuan, Y. Shi, Q. Meng, Solid. State. Commun., 2010, 150, 585-589.
[25] N. Topnani, S. Kushwaha, T. Athar, Int. J. Mater. Sci. Eng., 2009, 1, 67-73.
[26] M. Salavati-Niasari, F. Davar, Mater. Lett., 2009, 63, 441-443.
[27] J. Ying, Li, Sh. Xiong, B. Xi, X.G. Li, Y. T. Qian, Cryst. Growth. Des., 2009, 9, 4108-4115.
[28] D. Shang, K. Yua, Y. Zhang, J. Xu, J. Wu, Y. Xu, L. Li, Z. Zhu, Appl. Surface. Sci., 2009, 255, 4093-4098.
[29] R.V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater., 2000, 12, 2301-2305.
[30] A.A. Eliseev, A.V. Lukashin, A.A. Vertegel, L.I. Heifets, A.I. Zhirov, Y.D. Tretyakov, Mater. Res. Innov., 2000, 3, 308-312.
[31] J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J. Solid. State. Chem., 2000, 147, 520-526.
[32] K. Borgohain, J.B. Singh, M.V. Rama Rao, T. Shripathi, S. Mahamuni, Phys. Rev., 2000, 61, 11093-11098.
[33] J.Q. Yu, Z. Xu, D.Z. Jia, Chin. J., Func. Mater. Instrum., 1999, 5, 267-273.
[34] S. Nakao, M. Ikeyama, T. Mizota, P. Jin, M. Tazawa, Y. Miyagawa, S. Miyagawa, S. Wang, L. Wang, Rep. Res. Cent. Ion Beam Technol., 2000, 18, 153.
[36] N. Toshima, T. Yonezawa, New. J. Chem., 1998, 22, 1179120.
[37] P. Lahirri, S.K. Sengupta, Can. J. Chem., 1991, 69, 33-36.
[38] M. Sadeghi, M. H.Hosseini, J. Appl. Chem. Res., 2013, 7, 39-49.
[40] H.R. Shakur, Physica E., 2011, 44, 641–646.