Document Type : Original Research Article

Authors

1 Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran

2 Department of Physics, Payame Noor University, P. O. Box 119395-3697, Tehran, Iran

3 Department of Biology, Payame Noor University, P. O. Box 119395-3697, Tehran, Iran

4 Department of Chemistry, Payame Noor University,P. O. Box 119395-3697, Tehran, Iran

Abstract

Cupper Oxide structures with a variety of novel morphologies are synthesized using cupper foil as substrate via a solution route. The structure, morphology and phase of the as-synthesized nanostructures are analyzed by various techniques. SEM images show gradual development of hierarchical structures of copper oxide with different morphology. In order to study the effect of reaction time and temperature on the morphology of the CuO samples, experiments carried out at temperatures 0 °C and 25 °C for 10 min up to 12h. Results showed that the prepared samples exhibited some novel morphology such as nanorods, nanosheets, microflowers, Cubic shaped structures and Tulip flower-shaped structures.

Graphical Abstract

The effect of time and temperature on the growth and morphology of cupper oxide nanostructures

Keywords

Main Subjects

[1] C. Deng, H. Hu, W. Zhu, C. Han, G. Shao, Mater. Lett., 2011, 65, 575-578.
[2] Y. Li, X.Y. Yang, J. Rooke, G.V. Tendeloo, B.L. Su, J. Colloid Interface Sci., 2010, 348, 303-312.
[3] J. Xia, H. Li, Z. Luo, K.Wang, S. Yin, Y. Yan, Appl. Surf. Sci., 2010, 256, 1871-1877.
[4] M.H. Chang, H.S. Liu, C.Y. Tai, Powder. Tech., 2011, 207, 378-386.
[5] A. Aimable, A. Torres Puentes, P. Bowen, Powder. Tech., 2011, 208, 467-471.
[6] Y. Liu, Y. Chu, M. Li, L. Li, L. Dong, J. Mater. Chem., 2006, 16, 192-198.
[7] Q. Yang, P.X. Yan, J.B. Chang, J.J. Feng, G.H. Yue, Phys. Lett. A., 2007, 361, 493-496.
[8] W. Zhang, S. Ding, Z. Yang, A. Liu, Y. Qian, S. Tang, S. Yang, J. Cryst. Growth., 2006, 291, 479-484.
[9] A. Aslani, V. Oroojpour, Physica B., 2011, 406, 144-149.
[10] C.H. Xu, C.H. Woo, S.Q. Shi, Chem. Phys, Lett., 2004, 399, 62-66.
[11] J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan, J. Alloy. Compd., 2008, 454, 268-273.
[12] X. Tao, L. Sun, Y. Zhao, Mater. Chem. Phys., 2011, 125, 219-223.
[13] S. Anandan, G.J. Lee, J.J. Wu, Ultrason. Sonochem., 2012, 19, 682-686.
[14] H. Wang, J.Z. Xu, J.J. Zhu, H.Y. Chen, J. Cryst. Growth., 2002, 244, 88-94.
[15] L. Guo, F. Tong, H. Liu, H. Yang, J. Li, Mater. Lett., 2012, 71, 32-35.
[16] T.H. Guo, Y. Liu, Y.C. Zhang, M. Zhang, Mater. Lett., 2011, 65, 639-641.
[17] J. Ungelenk, C. Feldmann, Appl. Catal. B., 2011, 102, 515-520.
[18] S.Z. Liu, Y.C. Zhang, Mater. Lett., 2012, 71, 154-156.
[19] C. Ai, Y. Xiao, W. Wen, L. Yuan, Powder. Tech., 2011, 210, 323-327.
[20] S. Liu, D. Tao, L. Zhang, Powder. Tech., 2012, 217, 502-509.
[21] K. Krishnamoorthy, S.J. Kim, Mater. Res. Bull., 2013, 48, 3136-3139. 
[22] R. Sathyamoorthy, K. Mageshwari, Physica. E., 2013, 47, 157-161.
[23] S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Chem. Eng. J., 2012, 204, 158-168.