Document Type : Original Research Article

Author

Department of Chemistry, Payame Noor University, P.O. BOX 19395-3697, Tehran, Iran

10.30473/icc.2020.50955.1647

Abstract

TiO2-SiO2/chitosan nanocomposite was synthesized using simple sonochemical technique. The characteristics of the synthesized nanocomposite were examined by TEM, SEM and EDX analysis. The performance of the prepared TiO2-SiO2/chitosan nanocomposite as efficient sonocatalyst was investigated for the degradation of methyl red. Sonocatalytic degradation of methyl red in the presence of TiO2-SiO2/chitosan nanocomposite could be described via the mechanisms of hot spots and sonoluminescence. The optimized values for main operational parameters were detected as pH of 3, TiO2-SiO2/chitosan dosage of 450 mg/L, methyl red initial concentration of 20 mg/L and ultrasonic power of 300 W. Under optimal conditions, the sonocatalytic degradation of methyl red was 99.1 %. Based on the obtained results, TiO2-SiO2/chitosan nanocomposite could be an excellent selectivity for sonocatalytic degradation of anionic dyes such as methyl red.

Graphical Abstract

Sonocatalytic degradation of methyl red by sonochemically synthesized TiO2-SiO2/chitosan nanocomposite

Keywords

Main Subjects

[1] A. Lekshmi. G.S. Pillai, Int. Res. J. Eng. Tech., 2018, 5, 1343-1349.
[2] Z. Khani, D. Schieppati, C.L. Bianchi, D.C. Boto, Catalysts, 2019, 9, 1-20.
[3] A. Rosales, A. Maury-Ramírez, R.M.D. Gutiérrez, C. Guzmán, K. Esquivel, Coatings, 2018, 8, 1-13.
[4] R. Mohammadia, M. Isazadeh, Asian J. Green Chem., 2019, 3, 432-454.
[5] N. Yuan, G. Zhang, S. Guo, Z. Wan, Ultrason. Sonochem., 2016, 28, 62–68.
[6] X. Hu, Q. Zhu, Z. Gu, N. Zhang, N. Liu, M.S. Stanislaus, D. Li, Y. Yang, Ultrason. Sonochem., 2017, 36, 301–308.
[7] R.D.C. Soltani, S. Jorfi, H. Ramezani, S. Purfadakari, Ultrason. Sonochem., 2016, 28, 69–78.
[8] R. Mohammadia, N. Sabourmoghaddam, Asian J. Green Chem., 2020, 4, 11-32.
[9] W. Sangchay, Energy Procedia., 2016, 89, 170–176.
[10] A. Khataee, R. Honarnezhad, M. Fathinia, J. Environ. Manage., 2018, 211, 225-237.
[11] S. Song, C. Hao, X. Zhang, Q. Zhang, R. Sun, Open Chem., 2018, 16, 1283-1296.
[12] R. Huang, Q. Liu, J. Huo, B. Yang, Arab. J. Chem., 2017, 10, 24-32.
[13] Z. He, C. Sun, S. Yang, Y. Ding, H. He, Z. Wang, J. Hazard Mater., 2009, 162, 1477–1486.
[14] R. Mohammadi, N. Sabourmoghaddam, Asian J. Green Chem., 2020, 4, 107-120.
[15] A. Raut, H.M. Yadav, A. Gnanamani, S. Pushpavanamd, S.H. Pawar, Colloids and Surfaces B: Biointerfaces, 2016, 148, 566-575,
[16] T. Thi, T. Nguyen, O. Hee, J. Seo, Carbohydr. Polym., 2011, 86, 1799-1806.
[17] I.W. Nam, H.K. Kim, H.K. Lee, Constr. Build. Mater., 2012, 30, 480-487.
[18] A. Khataee, H. Marandizadeh, B. Vahid, M. Zarei, S.W. Joo, Chem. Eng. Process., 2013, 73, 103–110.
[19] K. Guan, Surf. Coat. Technol., 2005, 191, 155–160.
[20] R. Mohammadi, B. Massoumi, Russ. J. Phys. Chem. A., 2014, 88, 1184–1190.
[21] M. Zeng, Bull. Korean Chem. Soc. 2013, 34, 953-956.
[22] I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett., 2010, 10, 577–583.
[23] M. Stucchi, G. Cerrato, C.L. Bianchi, Ultrason. Sonochem., 2019, 51, 462–468.
[24] J. Wang, B. Guo, X. Zhang, Z. Zhang, J. Han, J. Wu, Ultrason. Sonochem., 2005, 12, 331-337.
[25] N. Bayal, P. Jeevanandam, Ceram. Int., 2014, 40, 15463-15477.
[26] A.M.M. Ahmeda, A.E. Alib, A.H. Ghazy, AdvJ. Chem. A., 2019, 2, 79-93.
[27] S. Sheshmani, A. Ashori, S. Hasanzadeh, Int. J. Biol. Macromol., 2014, 68, 218-224.
[28] S. Tabasideh, A. Maleki, B. Shahmoradi, E. Ghahremani, G. Mckay, Sep. Purif.  Technol., 2017, 189, 186-192.
[29] M. Hamadanian, A. Reisi-Vanani, A. Majedi, J. Iranian. Chem. Soc., 20107, 1, S52–S58.
[30] A.J. Haider, R.H. AL–Anbari, G.R. Kadhim, C.T. Salame, Energy Procedia., 2017, 119, 332–345.
[31] L. Liu, Y. Li, Aerosol. Air Qual. Res., 2014, 14, 453-469.
[32] K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Electrochem. Commun., 2000, 2, 207–210.
[33] J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, J. Hazard. Mater., 2009, 168, 253- 261.
[34] S.T. Huang, Y.R. Jiang, S.Y. Chou, Y.M. Dai, C.C. Chen, J. Mol. Catal. A Chem., 2014, 391, 105–120.
[35] M.A.I. Molla, I. Tateishi, M. Furukawa, H. Katsumata, T. Suzuki, S. Kaneco, Open J. Inorg. Non Met. Mater., 2017, 7, 1–7.
[36] H. Park, Y. Park, W. Kim, W. Choi, J. Photochem. Photobiol. C Photochem. Rev., 2013, 15, 1–20.
[37] L.G. Devi, S.G. Kumar, Appl. Surf. Sci., 2012, 261, 137–146.
[38] K. Zaja, J. Choina, D. Dolat, A. Morawski, Pol. J. Environ. Stud., 2010, 19, 685– 691.