Document Type : Original Research Article
Authors
- Isak Rajjak Shaikh 1
- Noor Mahmad Nabisaheb Maldar 2
- Caroline Sunyong Lee 3
- Rajendra Charandeo Pawar 3
- Hyung-Ho Park 4
- Uzma Khwaja-Husain Bangi 5
1 School of Chemical Sciences, Swami Ramanand Teerth Marathwada University (SRTMU), Vishnupuri, Nanded – 431 606 (Maharashtra) India
2 Solapur University, Solapur (Maharashtra) India
3 Hanyang University ERICA campus, 5th Engineering Building, 55 Hanyangdaehak-ro, Sangrok-gu Ansan-si, Gyeonggi-do 426-791, South Korea
4 Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
5 School of Physical Sciences, Solapur University, Solapur city (Maharashtra) India
Abstract
Multiwalled Carbon Nanotube (MWCNT) reinforced silica aerogel was synthesized in a very simple and cost effective sol - gel method. The process was followed by ambient pressure drying, and then the aerogel material was characterized by XRD, BET, SEM, EDX and FT-IR. 2.3 x 10-3 wt% MWCNTs were successfully incorporated in sodium silicate based silica aerogel. This metal-free nanocomposite catalyzed a four component organic reaction among 4-hydroxy coumarin, benzaldehyde, phenyl hydrazine, and ethyl acetoacetate for synthesizing medicinally important benzylpyrazolyl coumarin at room temperature. The MWCNT/silica aerogel composite material having easy accessible active sites and high catalytic activity was easily recovered and reused. The aerogel composite when impregnated with ceria offered very efficient and selective reaction methodology.
Graphical Abstract
Keywords
- MWCNT/Silica aerogel
- ambient pressure drying
- MWCNT/Silica aerogel heterogeneous catalysis
- multicomponent reaction
- benzylpyrazolyl coumarin
Main Subjects