Document Type : Original Research Article

Authors

1 School of Chemical Sciences, Swami Ramanand Teerth Marathwada University (SRTMU), Vishnupuri, Nanded – 431 606 (Maharashtra) India

2 Solapur University, Solapur (Maharashtra) India

3 Hanyang University ERICA campus, 5th Engineering Building, 55 Hanyangdaehak-ro, Sangrok-gu Ansan-si, Gyeonggi-do 426-791, South Korea

4 Department of Materials Science and Engineering, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea

5 School of Physical Sciences, Solapur University, Solapur city (Maharashtra) India

Abstract

Multiwalled Carbon Nanotube (MWCNT) reinforced silica aerogel was synthesized in a very simple and cost effective sol - gel method. The process was followed by ambient pressure drying, and then the aerogel material was characterized by XRD, BET, SEM, EDX and FT-IR. 2.3 x 10-3 wt% MWCNTs were successfully incorporated in sodium silicate based silica aerogel. This metal-free nanocomposite catalyzed a four component organic reaction among 4-hydroxy coumarin, benzaldehyde, phenyl hydrazine, and ethyl acetoacetate for synthesizing medicinally important benzylpyrazolyl coumarin at room temperature. The MWCNT/silica aerogel composite material having easy accessible active sites and high catalytic activity was easily recovered and reused. The aerogel composite when impregnated with ceria offered very efficient and selective reaction methodology.

Graphical Abstract

MWCNT incorporated silica aerogel prepared by ambient pressure drying: A recyclable catalyst for multicomponent synthesis of benzylpyrazolyl coumarin at room temperature

Keywords

Main Subjects

[1] R.C. Cioc, E. Ruijter, R.V.A. Orru, Green Chem., 2014, 16, 2958-2975. 
[2] P. Pratim; G. Pal, S. Paul, A.R. Das, Green Chem., 2012, 14, 2691-2698.
[3] S.S. Kistler, Nature, 1931, 127, 741.                                                                  
[4] B. Gawel, K. Gawel, G. Oye, Materials (Basel), 2010, 3, 2815-2833.
[5] M.L.N. Perdigoto, R.C. Martins, N. Rocha, M.J. Quina, L. Gando-Ferreira, R. Patricio, L. Duraes, J. Colloids Int. Sci., 2012, 380, 134–140.
[6] G. M. Pajonk, Cata. Today, 1999, 52, 3-13. 
[7] L.S. Ling, H. Hamdan, J. Non-Crystalline Solids, 2008, 354, 3939–3943.                                                                                                                                                         
[8] B. Zhang, J. Zhang, X. Sang, C. Liu, T. Luo, L. Peng, B. Han, X. Tan, X. Ma, D. Wang, N. Zhao, Scientific Reports, 2016, 6, Article number: 25830. DOI: 10.1038/srep25830.
[9] M.A. Reicher, E. Ortelli, A. Baiker, Appl. Catal. B: Environ., 1999, 23, 187-203.
[10] C.A. Müller, M. Maciejewski, T. Mallat, A. Baiker, J. Catal., 1999, 184, 280-293.
[11] C.A. Müller, M. Schneider, T. Mallat, A. Baiker, Appl. Catal. A: General, 2001, 201, 253-261.
[12] S. Hu, R.J. Willey, B. Notari, J. Catal., 2003, 220, 240-248.
[13] M. Spiro, Catal. Today, 1990, 7, 167-178.
[14] L.R. Radovic, F. Rodriguez-Reinoso, Carbon Materials in Catalysis, In Chemistry and Physics of Carbon; Thrower, P. A. (Eds.); New York: Marcel Dekker, USA, pp. 243-358, Vol. 25, 1997.
[15] S. Iijima, Nature, 1991, 354, 56 - 58.                                                            
[16] S. Iijima, T. Ichihashi, Nature, 1993, 363, 603-605.
[17] J.M. Schnorr, T.M. Swager, Chem. Mater., 2011, 23, 646-657.
[18] R.P. Rocha, Olívia S.G.P. Soares, J.L. Figueiredo, M.F.R. Pereira, J. Carbon Res., 2016, 2(3), 17.
[19] Q. Zhang, J.-Q. Huang, W.-Z. Qian, Y.-Y. Zhang, F. Wei, Small, 2013, 9, 1237-1265.
[20] T. Altalhi, M. Ginic-Markovic, N. Han, S. Clarke, D. Losic, Membranes, 2011, 1, 37-47.
[21] H. Bargozin, L. Amirkhani, J.S. Moghaddas, M.M. Ahadian, Transaction F: Nanotechnology, 2010, 17, 122-132.
[22] J. Huang, H. Liu, S. Chen, C. Ding, J. Env. Chem. Eng., 2016, 4, 3274-3282.
[23] Uzma K.H. Bangi, M.S. Kavale, S-S Baek, H-H Park, J. Sol-Gel Sci. Technol., 2012, 62, 201-207.                                                               
[24] U.K.H. Bangi, C-S Park, S-S Baek, H-H Park, Ceramics Int., 2012, 38, 6883–6888.                               
[25] I. Stamatin, A. Morozan, A. Dumitru, V. Ciupina, G. Prodan, J. Niewolski, H. Figiel, Physica E, 2007, 37, 44-48.
[26] O. Eren, N. Ucar, A. Onen, N. Kizildag, I. Karacan, J. Composite Mater., 2016, 50, 2073-2086.                                                                    
[27] A. Saha, S. Payra, S.K. Verma, M. Mandal, S. Thareja, S. Banerjee, RSC Advances, 2015, 5, 100978-100983.
[28] A. Saha, S. Payra, S. Banerjee, Green Chem., 2015, 17, 2859-2866.
[29] I.R. Shaikh, U.K.H. Bangi, P.R. Shaikh, Songklanakarin J. Sci. & Tech., Article in press, Manuscript ID SJST-2017-0145.R1, http://rdo.psu.ac.th/sjstweb/ArticleInPress.php.
[30] B.B. Totawar (Supervisor: P. K. Zubaidha), Ph.D. thesis, SRT Marathwada University, Nanded, India, 2017.                                               
[31] P.P. Ghosh, A.R. Das, Tet. Lett., 2012, 53, 3140-3143.