Document Type : Original Research Article

Authors

1 Nano-chemistry Research Laboratory, G. T. Patil College, Nandurbar-425 412 (M.S.) India affiliated to North Maharashtra University, Jalgaon (M.S)

2 Deptt. of Chemistry, Kisan Arts, Commerce and Science College, Parola-425 111 (M.S.) India

3 Kisan Arts, Commerce and Science College, Parola Dist- Jalgaon (M.S.) India

4 Nano-chemistry Research Laboratory, G. T. Patil College, Nandurbar-425 412 (M.S.) India

Abstract

The present study reports, the synthesis of ZnO-bentonite nanocomposite by the incorporation of ZnO with bentonite clay. The nanocomposite was characterised by XRD and SEM. ZnO-bentonite was effectively used for removal of Methylene Blue (MB). Removal of MB takes place by photocatalytic degradation and adsorption. Photocatalytic degradation of MB occurs by advanced oxidation process. The factors affecting photocatalytic degradation like pH, initial dye concentration, contact time and photocatalyst dose are investigated. Optimum pH was 8 and contact time was 80 min for photocatalytic degradation of MB. The kinetic study shows that adsorption follows pseudo-second-order kinetics. Adsorption was also described by Langmuir and Freundlich isotherms. Adsorption isotherm found to follow Langmuir isotherm. The monolayer coverage capacity was observed to be 62.5 mg/g. The amount of dye adsorbed was 252.7 mg/g for 0.2 g/L photocatalyst dose at 60mg/L MB concentration.

Graphical Abstract

Kinetics of photocatalytic degradation of methylene blue by ZnO-bentonite nanocomposite

Keywords

Main Subjects

[1] B. H. Hameed, R.R. Krishni, S.A.  Sata, J. Hazard. Mater., 2009, 162,  305–311.
[2] G.L.J. Zhao, New J. Chem., 2000, 24, 411-417.
[3] I. Arslan, A.I. Balcioglu, J. Chem. Technol. Biotechnol., 2001, 76, 53–60.
[4] S. Meshram, R. Limaye,  S. Ghodke, S. Nigam, S. Sonawane, R. Chikate, Chem. Eng. J., 2011, 172, 1008-1015.
[5] W. Dong, C.W. Lee, X. Lu, Y. Sun, W. Hua, G. Zhuang, S. Zhang, J. Chen, H. Hou, D. Zhao, Appl. Catal. B, 2010, 95, 197–207.
[6] D.P. Tiwari, S.K. Singh, N. Sharma, Appl. Water Sci., 2015, 5, 81-88.
[7] H.S. Kibombo, R. Peng, S. Rasalingam, R.T. Koodali, Catal. Sci. Technol., 2012, 2, 1737–1766.
[8] S.P. Patil, V.S. Shrivastava, G.H. Sonawane, Desalin. Water Treat., 2015, 54, 374-381.
[9] R. Georgekutty, M.K. Seery, S.C. Pillai, J.  Phys. Chem. C, 2008, 112, 13563–13570.
[10] U.G. Akpan, B.H. Hameed, J. Hazard. Mater., 2009, 170, 520–529.
[11] Y.H. Son, J.K. Lee, Y. Soong, D. Martello, M. Chyu, Chem. Mater., 2010, 22, 2226–2232.
[12] S. Sonawane, P. Chaudhari, S. Ghodke, S. Phadtare, S. Meshram, J. Sci. Ind. Res., 2009, 68, 162–167.
[13] M. Hajjaji, A. Beraa, Appl. Water Sci., 2015, 5, 71-79.
[14] E. Bazrafshan, A.A. Zarei, H. Nadi, M.A. Zazouli, Ind. J. Chem. Tech., 2014, 21, 105-113.
[15] Q. Wang, C. Chen, D. Zhao, W. Ma, J. Zhao, Langmuir, 2008, 24, 7338-7345.
[16] M.-C. Shih, Desalin. Water Treat., 2012, 37,  200-214.
[17] A. Di Paola, E. García-López, G. Marcì, L. Palmisano, J. Hazard. Mater., 2012, 211– 212, 3– 29.
 
[18] M. Safari, M. Nikazar, M. Dadvar, J. Ind. Eng. Chem., 2013, 19, 1697–1702.
[19] C.H. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.M. Herrmann, J. Photochem. Photobiol. A: Chem., 2003, 158, 27.
[20] K. Bubacz, J. Choina, D. Dolat, A.W. Morawski, Polish J. Environ. Stud., 2010, 19, (4) 685-691.
[21] Swati, Munesh & Meena R C, Archives of Applied Science Research, 2012, 4 (1) 472-479.
[22] N. SoltaniE. Saion, M. Z. HusseinM. ErfaniA. AbediniG. Bahmanrokh, M. NavaseryP. Vaziri, Int. J Mol. Sci., 2012, 13, 12242-12258.
[23] Ö. Kerkez, İ Boz, Reaction Kinetics, Mechanisms & Catalysis, 2013, 110, 543-557.
[24] Z.A.C. Ramli, N. Asim, W.N.R.W. Ishak, Z. Emdadi, N.A.-Ludin, M.A. Yarmo, K. Sopian, The Scientific World Journal, 2014, 2014, 1-8.
[25] Y.S. Ho, G. McKay, Resources, Conservation and Recycling, 1999, 25, 171–193.
[26] G.H. Sonawane, V.S.  Shrivastava, Desalination, 2009, 247, 430-441.
[27] K.Y. Foo, B.H. Hameed, Chem. Eng. J., 2010, 156, 2–10.
[28] F. Haghseresht, G. Lu, Energy Fuels, 1998, 12, 1100–1107.