Document Type : Original Research Article

Authors

1 Faculty of Chemistry, Urmia University, 57159, Urmia, Iran

2 Department of Chemistry, Islamic Azad University, Mashhad, Iran

3 Department of Chemistry, Tehran Centre branch, Payam-e-Noor University, Tehran, Iran

Abstract

A convenient route for cyanation and bromination of some electron-rich aromatics (anisole, 1,3-dimethoxybenzene, 1,4-dimethoxybenzene, 1,3,5-trimethoxybenzene and β-naphthol) by BrCN in the presence of aluminum trichloride (AlCl3), as catalyst, by grinding method under solvent-free conditions at room temperature to 60 °C was described in good yield. The structures of all obtained products were characterized by FT-IR, 1H NMR, 13C NMR, and Mass spectrometry techniques. Anisole and 4-cyanobenzonitrile afforded both cyanated and brominated products. 1,3-Dimethoxybenzene yielded to two types of the cyanated products. 1,4-Dimethoxybenzene has done some unusual coupling reactions via new Beckmann-type rearrangement. No bromination of 1,4-dimethoxybenzene was observed under the same conditions. 1,3,5-Trimethoxybenzene and β-naphthol obtained both cyanated and brominated products which were analyzed by HPLC technique.

Graphical Abstract

Cyanation and bromination of electron-rich aromatics by BrCN under solvent-free conditions catalyzed by AlCl3: A new examples of Beckmann-type rearrangement

Keywords

Main Subjects

[1] G.A. Olah, Friedel-Crafts Chemistry, vol. 1, Wiley, New York, 1963.
[2] P. Arpentinier, F. Cavani, Trifiro F., The Technology of Catalytic Oxidations, Editions Technique, Paris, 2001.
[3] N.B.H. Henis, L.L. Miller, J. Am. Chem. Soc., 1983, 105, 2820-2823.
[4] G. Yan, C. Kuang, Y. Zhang, J. Wang, Org. Lett., 2010, 12, 1052-1055.
[5] C. Spino, Angew. Chem. Int. Ed., 2004, 43, 1764-1766.
[6] P.H. Gore, F.S. Kamounah, A.Y. Miri, Tetrahedron, 1979, 35, 2927-2929.
[7] L. Eberson, F. Radner, Acta Chem. Scand. 1992, 46, 312-314.
[8] K. Okamoto, M. Watanabe, M. Murai, R. Hatano, K. Ohe, Chem. Commun., 2012, 48, 3127-3129.
[9] Kim, J.; Kim, H.J.; Chang, S. Angew. Chem. Int. Ed., 2012, 51, 11948-11959.
[10] V. Kumar, Synlett, 2005, 10, 1638.
[11] D. Martin, M. Bauer, Cyanic Acid Esters from Phenols: Phenyl Cyanate, Org. Synth. Coll., Vol. 7, John Wiley & Sons, London, 1990.
[12] P.B. W. McCallum, M.R. Grimmett, A.G. Blackman, R.T. Weavers, Aust. J. Chem., 1999, 52, 159-166.
[13] D.D. Tanner, G. Lycan, N.J. Bunce, Can. J. Chem., 1970, 48, 1492-1497.
[14] A. Alberola, C. Andres, A.G. Ortega, R. Pedrosa, M. Vicente, Synth. Commun., 1986, 16, 1161-1165.
[15] S. Thambidurai, S. Abdul Samath, K. Jeyasubramanian, S.K. Ramalingam, Polyhedron, 1994, 13, 2825-2829.
[16] S. Chambert, F. Thomasson, J.-L. Decout, J. Org. Chem., 2002, 67, 1898-1904.
[17] W.W. Hartman, E.E. Dreger, Org. Synth. Coll., 1943, 2, 150.
[18] Merck Chemical Catalogue, Merck KGaA, Darmstadt, 2002.
[19] Sigma-Aldrich Chemical Catalogue, Material Safety Data Sheet, Version 3.0, 2010.
[20] Sigma-Aldrich Chemical Catalogue, Gillingham-Dorset SP84JL, England, 1994.
[22] L.G. Donaruma, W.Z. Heldt, Org. React., 1960, 11, 1-156.
[23] C.M. Darling, C.P. Chen, J. Pharm. Sci., 1978, 67, 860-861.
[24] A. Martínez-Asencio, M. Yus, D.J. Ramón, Tetrahedron, 2012, 68, 3948-3951.
[25] E.G. Rozantsev, A.V. Chudinov, V.D. Sholle, Bulletin Acad. Sci. USSR, 1980, 29, 1510-1513.
[26] H.P. Fischer, F. Funk-Kretschmar, Helv. Chim. Acta, 1969, 52, 913-933.