[2] D. Dwork; R.J.
van Pelt, Auschwitz, 1270 to the present. Norton,
1996, 443.
[3]
Hydrogen Cyanide.
Organization for the Prohibition of Chemical Weapons, Retrieved,
2009, 14.
[5] P. Patnaik, Handbook of Inorganic Chemicals.
McGraw-Hill, ISBN 0-07-049439-8,
2002.
[6] M. Zhao, F. Yang, Y. Xue, D. Xiao, Y. Guo, J. Mol. Model, 2014, 20, 2214‒2218.
[7] Y.M. Zhang, D.J. Zhang, C.B. Liu, J. Phys. Chem B., 2006, 110, 4671‒4674.
[8] R.X. Wang, D.J. Zhang, Y.J. Liu, C.B. Liu, Nanotechnology, 2009, 20, 505704‒10.
[9] A. A. Peyghan, N. L. Hadipour , Z. Bagheri, J. Phys. Chem C, 2013, 117, 2427‒2432.
[10] R.Q. Wu, M. Yang, Y.H. Lu, Y.P. Feng, Z.Q. Huang, Q.Y.Wu, J. Phys. Chem C, 2008,112, 15985‒15988.
[11] S.F. Rastegar, A.A. Peyghan, N. L. Hadipour, Appl. Surf. Sci, 2013, 265, 412‒417.
[12] A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B, 1994, 49, 5081‒5084.
[13] X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett, 1994, 28, 335‒ 340.
[14] N.G. Chopra, R.J. Luyken, K. Cherrey , V.H. Crespi , M.L. Cohen , S. G. Louie and A. Zettl, Science, 1995, 269, 966‒967 .
[15] Y. Li, Z. Zhou, D. Golberg, Y. Bando, P.R. Schleyer, Z. Chen, J. Phys. Chem C, 2008, 112, 1365‒1370.
[16] G. Kim, J. Park, S. Hong, Chem. Phys. Lett, 2012, 522, 79‒82.
[17] C.C. Tang , Y. Bando , C.H. Liu, S.S. Fan, J. Zhang, X.X. Ding, D. Golberg, J. Phys. Chem B, 2006, 110, 10354‒7 .
[18] S. Tontapha, V. Ruangpornvisuti, B. Wanno, J. Mol. Model, 2013, 19, 239‒245.
[19] S.M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernholc, M.B. Nardelli, Phys. Rev. B, 2003, 67, 235406 ‒10.
[20] X. Wu, W. An, X.C. Zeng, J. Am. Chem. Soc, 2006, 128, 12001‒6.
[21] X.J. Wu, J.L. Yang, J.G. Hou, Q.S. Zhu, Phys. Rev. B, 2004, 69, 153411‒14.
[22] H.J. Xiang, J.L. Yang, J.G. Hou, Q. S. Zhu, Appl. Phys. Lett, 2005, 87, 243113‒243115.
[23] Y. Li, Z. Zhou, J. Zhao, Nanotechnology, 2008, 19, 015202‒7.
[24] A. Ahmadi, J. Beheshtian, L.N. Hadipour, Struct. Chem, 2011, 22, 183‒188.
[25] J. Zhao, Y. Ding, J. Phys. Chem. C, 2008, 112, 20206‒11.
[26] M.T. Baei, Monatsh. Chem, 2012, 143, 989‒995.
[27] Y. Xie, Y.P. Huo, J.M. Zhang, Appl. Surf. Sci, 2012, 258, 6391‒6397.
[28] X.M. Li, W.Q. Tian, X.P. Huang, C.C. Sun, L. Jiang, J. Mol. Struct (THEOCHEM), 2009, 901, 103‒109.
[29] M.T. Baei, A.R. Soltani, A.V. Moradi, E.T. Lemeski, Compt. Theo. Chem, 2011, 970, 30‒35.
[30] J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Microelectron. J, 2011, 42, 1400‒1403.
[31] M. Rezaei Sameti, Physica E, 2010, 43, 588‒592.
[32] M. Rezaei-Sameti, Physica B, 2012, 407, 22‒26.
[33] M. Rezaei-Sameti, Physica E, 2012, 44, 1770‒1775.
[34] M. Rezaei-Sameti, Quantum Matter, 2013, 2, 1‒5.
[35] M. Rezaei-Sameti, S. Yaghobi, Phys. Chem. Res., 2013, 1, 90‒98.
[36] M. Rezaei-Sameti, A. Kazemi, Turk J Phys, 2015, 39, 128‒136.
[37] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system. J. Comput. Chem, 1993, 14, 1347‒1363.
[38] R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys, 1972, 54, 724‒728.
[39] M.T. Baei, M. Moghimi, P. Torabi, A. Varasteh Moradi, Comp. Theo. Chem, 2011, 972, 14‒19.
[40] P.K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev, 2006, 106, 2065‒2091.
[41] K.K. Hazarika, N.C. Baruah, R.C. Deka, Stru. Chem, 2009, 20, 1079‒1085.
[42] R.G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc, 1999, 121, 1922‒1924.
[43] R.G. Pearson, J. Chem. Sci, 2005, 111, 369‒377.
[44] B.C. Gerstein, C.R. Dybowski, Transient Techniques in NMR of Solids; Academic Press: New York, 1985.
[45] P. Pyykkö, Mol. Phys, 2001, 99, 1617‒1629.
[46] T. Koopmans, Physica, 1933, 1, 104.
[47] C. Tabtimsai , S. Keawwangchai, N. Nunthaboot, V. Ruangpornvisuti, B. Wanno, J. Mol. Model, 2012, 18, 3941‒3949.