Document Type : Original Research Article

Authors

1 Payeme Noor University of Kerman

2 Department of Chemistry, Payame Noor University of Kerman

Abstract

In this work, a low-cost activated carbon as well as non-hazardous material, with high adsorption capacity, was prepared from Melia azedarach fruit (MF) by ZnCl2 activation for the removal of Pb(II) toxic metal from aqueous solutions. The microstructure of the activated carbon was observed by Scanning Electron Microscopy (SEM). Batch experiments have been performed as a function of pH, contact time, dose of sorbent, initial Pb(II) concentration, temperature and strength ionic. It was found that the adsorption process was very quick and the equilibrium attained within 10 min. The maximum adsorption capacity for Pb(II) using Langmuir isotherm was 111.11 mg g-1. Thermodynamic study indicated that the Pb(II) adsorption was feasible, spontaneous, and endothermic. The results show that the produced activated carbon from Melia azedarach fruit is an efficient and cost-effective adsorbent for removing Pb(II).

Graphical Abstract

Adsorption of Pb(II) by activated carbon prepared from Melia azedarach fruit: Equilibrium and thermodynamics

Keywords

Main Subjects

[1] Q.Y. Ma, S.J. Traina, S.J. Logan, Environ. Sci. Technol., 1995, 29, 1118-1126.
[2] M.K. Aroua, S.P.P. Leong, L.Y. Teo, C.Y. Yin, W.M.A.W. Daud, Bioresource Technol., 2008, 99, 5786-5792.
[3] B.L. Martins, C.C.V. Cruz, A.S. Luna, C.A. Henriques, Biochem. Eng. J., 2006, 27, 310-314.
[4] S. Bhattacharjee, S. Chakrabarty, S. Maity, Water Res., 2003, 37, 3954-3966.
[5] A. Balaria1, S. Schiewer, S. Schiewer, Sep. Purif. Technol., 2008, 63, 577-581.
[6] Z. Djedidi, M. Bouda, M.A. Souissi, R.B. Cheikh, G. Mercier, R.D. Tyagi, J.F. Blais, J. Hazard. Mater., 2009, 172, 1372–1382.
[7] S.W. Lin, R.M.F. Navarro, Chemosphere, 1999, 39, 1809–1817.
[8] Y.H. Li, Z. Di, J. Ding, D. Wu, Z. Luan, Y. Zhu, Water Res., 2005, 39, 605–609.
[9] Ö. Gerc¸ el, H.F. Gerc¸ el, Chem. Eng. J., 2007, 132, 289–297.
[10] M. Islam, R. Patel, J. Hazard. Mater., 2009, 172, 707–715.
[11] D.W. O’Connell, C. Birkinshaw, T.F.   O’Dwyer, Bioresource Technol., 2008, 99, 6709–6724.
[12] G. Mckay, J.F. Porter, G.R. Prasad, Water Air Soil Pollut., 1999, 144, 423-438.
[13] L. Wang, J. Zhang, R. Zhao, Y. Li, C. Li, C. Zhang, Bioresource Technol., 2010, 101, 5808-5814.
[14] Y. Li, Q. Du, X. Wang, P.  Zhang, D. Wang, Z. Wang, Y. Xia. J. Hazard. Mater., 2010, 183, 583-589.
[15] M. Imamoglu, O. Tekir, Desalination, 2008, 228, 108-113.
[16] G. Issabayeva, M.K. Aroua, N.M.N. Sulaiman, Bioresource Technol., 2006, 97, 2350-2355.
[17] K. Li, X. Wang, Bioresource Technol., 2009, 100, 2810-2815.
[18] R.P. Suresh Jeyakumar, V. Chandrasekaran, Int. J. Ind. Chem., 2014, 5, 2-10.
[19] S. Lo, S. Wang, M. Tsai, L. Lin, Chem. Eng. Res. Des., 2012, 90, 1397-1406.
[20] A. ŞencanM. KaraboyacıM. KılıçEnviron. Sci. Pollut. Res., 2015, 22, 3238-3248.
[22] T.  Fatima, R. Nadeem A. Masood, R. Saeed, Int. J. Environ. Sci. Technol., 2013, 10, 1255-1264.
[26] V.  Kumar GuptaI. AliTawfik A. SalehM. N. SiddiquiS. AgarwalEnviron. Sci. Pollut. Res., 2013, 20, 1261-1268.
[28] S.Z. Mohammadi, M.A. Karimi, D. Afzali, F. Mansouri, Cent. Eur. J. Chem., 2010, 8, 1273-1280.
[29] A. Afkhami, M. Saber-Tehrani, H. Bagheri, J. Hazard. Mater., 2010, 181, 836-844.
[31] A. Roy, J. Bhattacharya, Chem. Eng. J., 2012, 211-212, 493-500.
[32] D. Zhao, X. Yang, H. Zhang , C. Chen, X. Wang, Chem. Eng. J., 2010, 164, 49-55.
[33] M.K. Mondal, J. Environ. Manage., 2009, 90, 3266–3271.
[34] A. Ahmad, M. Rafatullah, O. Sulaiman, M. Hakimi Ibrahim, Y. Yee Chii, B. Mobin Siddique, Desalination, 2009, 247, 636-646.
[35] Y. Zhu, J. Hu, J. Wang, J. Hazard. Mater., 2012, 221-222, 155-161.
[36] M. Momčilović M. Purenović,  A. Bojić A. Zarubica, M. Ranđelović,  Desalination, 2011, 276, 53–59.
[37] M.A. Prado Cechinel, S.M.A. GUlson de, A.A. Ulson de Souza,  J. Clean. Proud., 2014, 65, 342-349.