Document Type : Original Research Article

Authors

1 Department of Chemistry, Payame Noor University, Abhar, Iran

2 aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, IRAN

Abstract

Highly substituted 1,4-dihydropyrano[2,3-c]pyrazole derivatives were synthesized by four-component reaction of aromatic aldehydes, malononitrile, ethyl acetoacetate and various phenylhydrazine, using nickel ferrite as a recyclable nanocatalyst by a grinding method under solvent-free and thermal conditions. The reaction has the advantages of good yields, less pollution, ease of separation of the desired products, and of being environment friendly. A possible mechanism for this reaction was proposed.
Highly substituted 1,4-dihydropyrano[2,3-c]pyrazole derivatives were synthesized by four-component reaction of aromatic aldehydes, malononitrile, ethyl acetoacetate and various phenylhydrazine, using nickel ferrite as a recyclable nanocatalyst by a grinding method under solvent-free and thermal conditions. The reaction has the advantages of good yields, less pollution, ease of separation of the desired products, and of being environment friendly. A possible mechanism for this reaction was proposed.

Graphical Abstract

Nickel ferrite as a recyclable nanocatalyst for synthesis of novel highly substituted 1,4-dihydropyrano[2,3-c]pyrazole derivatives

Keywords

Main Subjects

[1] C.N. Ocallaghan, T.B.H. Mcmurry, J. Chem. Res., 1999, (S) 8, 457-457A.
[2] A.M. Shestopalov, N. Zukharal, D.H. Evans, M.E. Niyazgmbetov, Heterocycles, 1999, 51 (5), 1101-1107. 
[3] D.  Armesto, A. Albert, F.H. Cano, N. Marrtin, A. Ramos, M. Rodrigues, J.L. Segura, C.A. Seoane, J. Chem. Soc., Perkin Transactions 1, 1997, 22, 3401-3406.  
[4] J.L. Wang, D. Liu, Z.J. Zhang, S. Shan, X. Han, Proceedings of the National Academy of Sciences of the United States of America, 2000, 97 (13), 7124-7129.
[5] L.N.  Martin, M. Quinterio, C. Seoane, J.L. Soto, Liebigs Annalen der Chemie, 1990, 1, 101-104.
[6] S. Hatakeyama, N. Ochi, H. Numata, S. Takano, J. Chem. Soc., Chem. Commun., 1988, 1200. 
[7] M.R. Poor Heravi, ISRN Org. Chem, 2013, 52, 8329-8436.
[8] X.S. Wang, D.Q. Shi, S.J. Tu, C.S. Yao, Y.C. Wang, Chin. J. Struc. Chem., 2003, 22 (3), 331.
[9] D. Shi, J. Mou, Q. Zhuang, L. Niu, N. Wu, X. Wang, Synth. Commun., 2004, 34 (24), 4557.
[10] S. B. Guo, S.X. Wang, J.T. Li, Synth. Commun., 2007, 37, 2111-2120.
[11] F. Tanaka, F. Toda, Chem. Rev., 2000, 100, 1025-1074. 
[12] M.Z. Kassaee, F. Movahedi, H. Masouri, Synlett, 2009, 8, 1326-1330.
[13] Z. Mirjafari, H. Saeidian, A. Sadeghi, F. Matloubo Moghaddam, Catal. Comunn., 2008, 9, 299-306.
[14] M. Stratakis, H. Garcia, Chem. Rev., 2012, 112 (8), 4460-4506.
[15] K. Ablajan,Z.  Maimaiti, Synth. Commun., 2012, 42, 1959-1966.
[16] H. Mecadon, M.R. Rohman, I. Kharbangar, B.M. Laloo, I. Kharkongor, M. Rajbangshi, B. Myrboh, Tetrahedron Lett., 2011, 52, 3228-3231.
[17] M. Babaie, H. Sheibani, Arab. J. Chem., 2011, 4, 159-162.
[18]. Z. Karimi-Jaberi, M.M.  Reyazo Shams, B. Pooladian, Acta Chimica Slov., 2011, 60, 105-108.
[19] H.R. Shaterian, M. Kangani, Res Chem. Intermed., 2014, 40, 1997-2005.
[20]. M. Kangani, N. Hazeri, M.T. Maghsoodlou, S.M. Habibi-khorasani, S. Salahi, Res. Chem. Intermed., 2013, 2513–2519.
[21] A.N. Siddekha, A.M. Pasha, Spectrochim. Acta. Chimica Slov, 2013, 60, 105.
[22] G. Kumar, R. Rani, S. Sharma, K.M. Batto, M. Singh, Ceram. Inter., 2013, 39 (5), 4813-4818.
[23] P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Curr. Appl. Phy., 2011, 11, 101e108.
[24] J.M. Khurana, B. Nand, S. Kumar, Synth. Commun., 2011, 41, 405-410.
[25] R.S. Toreshettahally, S. Kothanahally, K. Sharath, P. Mariyappan, C. Somu, S.R. Kanchugarakoppal, J. Hetercycl. Chem., 2014, 51 (6), 1866-1870.
[26] V. Gnanasambandam, K. Kandhasamy, Tetrahedron Lett., 2008, 49, 5636-5638.
[27] M. Abdollahi-Alibeik, A. Ali Moaddeli, K. Masoomi, RSC Advances, 2015, 5(91) 74932-74939.