Document Type : Original Research Article

Authors

1 Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran

2 Islamic Azad University, Rasht branch, Iran

Abstract

Water is a versatile solvent in many ways, and in this sense performing organic reactions in this medium is now of great interest. The one-pot reaction of ethyl acetoacetate or benzyl acetoacetate, with benzaldehydes and malononitrile to provide some novel 6-amino-4-aryl-5-cyano-2-methyl-4H-pyran-3-carboxylates has been performed over nano MgO with high performance in water as a green solvent at 80 °C. The nanocrystalline MgO catalyst was characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET analysis. This method offers considerable improvements for the synthesis of 6-amino-4-aryl-5-cyano-2-methyl-4H-pyran-3-carboxylates with concern to the yield of products, facility in operation, and green aspects without using of toxic catalysts and solvents.

Graphical Abstract

Efficient one-pot synthesis of 6-amino-4-aryl-5-cyano-2-methyl-4H-pyran-3-carboxylates catalyzed by nano MgO in water

Keywords

Main Subjects

[1] P. Luches, S. Benedetti, M. Liberati, F. Boscherini, I.I. Pronin, S. Valeri, Surf. Sci., 2005, 583, 191-198.
[2] G. Bilalbegovic, Phys. Rev. B, 2004, 70, 45406-45407.
[3] C.S. Goh, J. Wei, L.C. Lee, J. Compos. Mater., 2007, 41, 2325–2335.
[4] G.A. Somorjai, J.Y. Park, Angew. Chem. Int. Ed., 2008, 47, 9212–9228.
[5] A. Martı´nez-Grau, J. Marco, Bioorg. Med. Chem. Lett., 1997, 7, 3165-3170.
[6] J.L. Wang, D. Liu, Z.J. Zhang, S. Shan, X. Han, S. M. Srinivasula, C. M. Croce, E.S. Alnemri, Z. Huang, Proc. Natl. Acad. Sci., 2000, 97, 7124-7129.
[7] W. Kemnitzer, J. Drewe, S. Jiang, H. Zhang, C. Crogan-Grundy, D. Labreque, M. Bubenick, G. Attardo, R. Denis, S. Lamothe, H. Gourdeau, B. Tseng, S. Kasibhatla, S.X. Cai, J. Med. Chem., 2008, 51, 417-423.
[8] M. Kidwai, S. Saxena, M.K.R. Khan, S.S. Thukral, Bioorg. Med. Chem. Lett., 2005, 15, 4295-4298.
[9] R.R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari, D. Sriram, Bioorg. Med. Chem. Lett., 2007, 17, 6459-6462.
[10] E.A. Hafez, M.H. Elnagdi, A.A. Elagamey, F.A. El-Taweel, Heterocycles, 1987, 26, 903-907.
[11] D. Armesto, W.M. Horspool, N. Martin, A. Ramos, C. Seoane, J. Org. Chem., 1989, 54, 3069-3072.
[12] X.S. Wang, Z.S. Zeng, M.M. Zhang, Y.L. Li, D.Q. Shi, S.J. Tu, X.Y.  Wei, Z.M. Zong, J. Chem. Res., 2006, 228-230.
[13] Y. Peng, G. Song, F. Huang, Monatsh. Chem., 2005, 136, 727-731.
[14] M M. Heravi, Y.S. Beheshtiha, Z. Pirnia, S. Sadjadi, M. Adibi, Synth. Commun., 2009, 39, 3663-3667.
[15] N. Seshu Babu, N. Pasha, K.T. Venkateswara Rao, P.S. Sai Prasad, N.A. Lingaiah, Tetrahedron Lett., 2008, 49, 2730-2733.
[16] S. Banerjee, A. Horn, H. Khatri, G. Sereda, Tetrahedron Lett., 2011, 52, 1878-1881.
[17] U.R. Pratap, D.V. Jawale, P.D. Netankar, R.A. Mane, Tetrahedron Lett., 2011, 52, 5817-5819.
[18] G.P. Lu, C. Cai, J. Heterocycl. Chem., 2011, 48, 124-128.
[19] C. Udhaya Kumar, A. Sethukumar, B. Arul Prakasam, J. Mol. Struct., 2013, 1036, 257-266.
 
[20] B. Maleki, S. Sheikh, Org. Prep. Proc. Int., 2015, 47, 368-378.
[21] A. Mossafaii Rad, M. Mokhtary, Int. Nano Lett., 2015, 5, 109–123.
[22] B. Karmakar, J. Banerji, Tetrahedron Lett., 2011, 52, 4957-4960.
[23] J. Safari, Z. Zarnegar, M. Heydarian, J. Taibah. Unvi. Sci., 2013, 7: 17-25.
[24] Z.X. Tang, X.J. Fang, Z.L. Zhang, T. Zhou, X.Y. Zhang, L.E. Shi, Braz. Chem. Eng., 2012, 29, 775-781.