Document Type : Original Research Article


Payam Noor University


In the recent work, the reaction mechanism between triphenylphosphine 1, dialkyl acetylenedicarboxylates 2 in the presence of NH-acid, such as 5-aminoindazole 3 were investigated theoretically. Quantum mechanical studies were performed for evaluation of potential energy surfaces of all structures participated in the reaction mechanism both in gas phase and in dichloromethane. The first step of all reactions was recognized as a rate-determining step in the reaction mechanism. All the possible structures partipated on the reaction coordinate were well predicted. Quantum mechanical calculations were clarified how the ylides exist in solution as a mixture of two geometrical isomers (Z- and E-) as a minor or major forms.

Graphical Abstract

Theoretical study on the mechanism of stable phosphorus ylides derived from 5-aminoindazole in the presence of different dialkyl acetyelenedicarboxylates


Main Subjects

[1] M. Crayson, E.J. Griffith, Topics in Phosphorus Chemistry. Insterscience, New York, 1972.
[2] H.R. Hudson, Primary Secondary and Tertiary Phosphines, Plyphosphines and Heterocyclic Organophosphorus (III) Compounds in the Chemistry of Organophosphorus Compounds. Wiley, New York, 1990.
[3] R. Engel, Synthesis of Carbon-phosphorus Bonds. CRC Press, Boca Rotan FL, 1988.  
[4] J.G. Cadogan, Organophosphorus Reagents in Organic Synthesis. Academic, New York, 1979.
[5] M. Kalantari, M.R. Islami, Z. Hassani, K. Saidi, Arkivoc., 2006, (x), 55-62.
[6] M.R. Islami, F. Mollazehi, A. Badiei, H. Sheibani., Arkivoc., 2005, (xv), 25-29.
[7] M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, Z. Moeeni, G. Marandi, J. Chem. Res., 2005, 566-568.
[8] M. Anary-Abbasinejad, H. Anaraki-Ardakani, H. Hosseini-Mehdiabad, Phosphorus Sulfur and Silicon Relat. Elem., 2008, 18, 1440-1447.
[9] A. Hassanabadi, M. Anary-Abbasinejad, A. Dehghan, Synth. Comm., 2009, 39, 132-138.
[10] H. Anaraki-Ardakani, S. Sadeghian, F. Rastegar, A. Hassanabadi, M. Anary-Abbasinejad., Synth. Comm., 2008, 38, 1990-1999.
[11] M. Zakarianezhad, S.M. Habibi-Khorassani, Z. Khajeali, B. Makiabadi., Arkivoc. 2013, (xvii), 173-179.
[12] B.E. Maryanoff, A.B. Reit., Chem. Rev., 1989, 89, 863-927.
[13] L. Fitjer, U. Quabeck., Synth. Comm., 1985, 15, 855-861.
[14] I. Yavari, S. Ali-Asgari, K. Porshamsian, M. Bagheri., J. Sulfur Chem., 2007, 28, 477-482.
[15] A. Ramazani, A. Souldozi., Phosphorus Sulfur Silicon Relat. Elem., 2005, 180, 2801-2804.
[16] I. Yavari, A.A. Alizadeh, Monatsh Chem., 2003, 134, 435-438.
[17] A. Ramazani, A. Bodaghi., Tetrahedron Lett., 2000, 41, 567-568.
[18] M.T. Maghsoodlou, N. Hazeri,  S.M. Habibi-Khorassani., Phosphorus Sulfur Silicon Relat. Elem., 2006, 181, 25-30.
[19] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, 2009, Gaussian, Inc., Wallingford CT.
[20] C. Gonzalez, H.B. Schlegel, J. Phys. Chem., 1990, 94, 5523-5527.
[21] C. Gonzalez, H.B. Schlegel, J. Chem. Phys., 1989, 90, 2154-2158.
[22] C. Eckart, Phys. Rev., 1930, 35, 1303-1307.