Document Type : Original Research Article

Authors

Department of Chemistry, Faculty of Science Islamic Azad University, Arak Branch, Arak, Iran

Abstract

Naphthol isomers were simultaneously and spectrophotometrically determined in wastewater, using a model based on net analyte signal (NAS). The calibration method used is a variation of the original hybrid linear analysis method as proposed by Goicoechea and Olivieri (HLA/GO). Owing to spectral interferences, the simultaneous determination of mixtures of naphthol isomers, using a spectrophotometric method, is difficult. A rapid and powerful method was used for wavelength selection in the modeling step, based on the minimization of the error indicator (EI), which was estimated as a function of the moving spectral region. The calculation of the net analytical signal using a modified HLA/GO method allows us to determine several figures of merit, as selectivity, sensitivity, analytical sensitivity and limit of detection of the proposed multivariate calibration. The limit of detection (LOD) for 1 and 2-naphthol, were 0.04 and 0.06 (µg/mL) respectively. The proposed model was tested in the analysis of wastewater samples, without previous sample preparation steps, obtaining recovery values between 98 and 104.00%, for 1-naphthol and between 97.00 and 103.00%, for 2-naphthol.

Graphical Abstract

Wavelength region selection and spectrophotometric simultaneous determination of naphthol isomers based on net analyte signal

Keywords

Main Subjects

[1] M.A. Farajzadeh, A.A. Matin, Anal. Sci, 2002, 18, 77–81.
[2] A. Pavlova, R. Ivanova, J. Environ. Monit, 2003, 5, 319–323.
[3] E.S. Brodskii, I.M. Lukashenko, G.A. Kalinkevich, S.A. Savchuk, Anal. Chem, 2002, 57, 486–490.
[4] M. Martienssen, O. Reichel, M. Schirmer, Chem. Ing. Tech, 2003, 75, 1749–1755.
[5] M.Voyevoda, W.Geyer, S.Mothes, Clean – Soil Air Water, 2008, 36, 164–170. 
[6] A.B. Lakshmi, A. Balasubramanian, S. Venkatesan, Clean- Soil Air Water, 2012, 41, 349-355.
[7] K.S. Hasheminasab, A.R. Fakhari, M. Baghdadi, Clean-Soil Air Water, 2013, 42, 1106-1114.
[8] S. Zhong, S.N. Tan, L. Ge, W. Wang, J. Chen, Talanta, 2011, 85, 488-492.
[9] S.O. Algar, N.R. Martos, A. Molina-Diaz, Talanta, 2003, 60, 313-323.
[10] A.S. Cavallo, B. Ahmed, M. Schmitt, F. Garin, C.R. Chimie., 2005, 8, 1975-1980.

[11] X. Zheng, S. Duan, S. Liu, M. Wei, F. Xia, D. Tian, C. Zhou, Anal. Methods, 2015, 7, 3063-3071.

[12] J.L. Italia, D. Singh, M.N.V. Ravi Kumar, Anal. Chim. Acta, 2009, 634, 110-114.
[13] H.H. Lim, H.S. Shin, Food chemistry, 2013, 138, 791-796.
[14] G. Jia, L. Li, J. Qiu, X. Wang, W. Zhu, Y. Sun, Spectrochim. Acta A, 2007, 67, 460-464.
[15] Y. Daghbouche, S. Garrigues, M.D. Guardia, Anal. Chim. Acta, 1995, 314, 203-212.
[16] A. Niazi, A. Yazdanipour, J Hazard. Mater, 2007, 146, 421-427.
[17] S. Shiri, M. Avazpour, A. Delpisheh, M. Loeimy, Iran. Chem. Commun., 2014, 2, 119-128.
[18] B.S.V. Seshamamba, P.V.V. Satyanarayana, C.B. Sekaran, Iran. Chem. Commun., 2014, 2, 255-268.
[19] A. Lorber, K. Faber, B.R. Kowalski, Anal. Chem, 1997, 69, 1620-1625.
[20] A.J. Berger, T.W. Koo, I. Itzkan, M. S. Feld, Anal. Chem, 1998, 70, 623-627.
[21] L. Xu and I. Schechter, Anal. Chem, 1996, 68, 2392-2400.
[22] H.C. Goicoechea, A.C. Olivieri, Anal. Chem, 1999, 71, 4361-4368.
[23] E.V. Thomas, D.M. Haaland, Anal. Chem, 1990, 62, 1091-1099.
[24] H.C. Goicoechea, A.C. Olivieri, Trends Anal. Chem, 2000, 19, 599-605.
[25] A. Lorber, Anal. Chem, 1986, 58, 1167-1173.
[26] B. Hemmateenejad, R. Ghavami, R. Miri, M. Shamsipur, Talanta, 2006, 68, 1222-1229.
[27] H.C. Goicoechea, A.C. Olivieri, The Analyst, 1999, 124, 725-731.
[28] J. Ferré, F.X. Rius, Anal. Chem, 1998, 70, 1999-2007.
[29] J.J. Lurie, Handbook of Analytical Chemistry, Mir Publishers, Moscow, 1978, p. 49.
[30] E. Morgan, Chemometrics, Experiments Design, John Wiley, New York; 1997, p.49.
[31] A.E. Mansilla, I.D. Meras, M.J.R. Gomez, A.M. Dela Pena, F. Salinas, Talanta, 2002, 58, 255-263.
[32] R. Preuss, J. Angerer, J. Chromatogr. B, 2004, 801, 307–316.