Document Type : Original Research Article

Authors

1 Organic Chemistry Research Laboratory, Department of Chemistry, Rajaram College Kolhapur, Maharashtra, India

2 Department of Chemistry, A.S.P. College Devrukh, Dist-Ratnagiri, Maharashtra, India-415804

3 Medicinal chemistry Research Laboratory, School of Chemical Science, Solapur University Solapur, Maharashtra, India-413255

Abstract

Regioselective synthesis of highly functionalized pyranopyrazoles was achieved in excellent yield from phenyl pyrazolone, substituted aromatic aldehyde with nitroketene-N,S-acetal in the presence of indium trichloride as a versatile catalyst under reflux condition in ethanol-water mixture. All reactions preceeded within a short period of time with excellent purity. All of the synthesized compounds were identified by IR, 1H NMR, 13C NMR and mass spectroscopy. Quantitative yields, inexpensive and environmentally friendly solvent system and simple work-up procedure are the attractive features of the present method. It is thus enviro-economic method without producing hazardous wastes. The formed pyranopyrazoles might find to possess important biological and pharmaceutical applications.

Graphical Abstract

Indium chloride (InCl3) catalysed domino protocol for the regioselective synthesis of highly functionalized pyranopyrazoles under mild conditions

Keywords

Main Subjects

[1] (a) B.B. Toure, D.G. Hall, Chem. Rev., 2009, 109, 4439-4486; (b) J.D. Sunderhaus, S.F. Martin, Chem-Eur. J. 2009, 15, 1300-1308; (c) B. Ganem, Acc. Chem. Res., 2009, 42, 463-472; (d) N. Ismabery, R. Lavila, Chem-Eur. J., 2008, 14, 8444-8454.
[2] (a) W. Bannwarth, E. Felder, Combinatorial Chemistry, Wiley-VCH, Weinheim, 2000; (b) J. Zhu, H. Bienayme, Multicomponent reactions, Wiley-VCH, Weinheim, 2005; (c) A. Doling, Chem. Rev., 2006, 106, 17–89; (d) J. Yu, F. Shi, L. –Z. Gong, Acc. Chem. Res., 2011, 44, 1156-1171; (e) H. Eckert, Molecules, 2012, 17, 1074-1102.
[3] (a) G. Balme, E. Bossharth, N. Monteiro, Eur. J. Org. Chem., 2003, 4101–4111; (b) R.V. A. Orru, M. De Greef, Synthesis, 2003, 1471–1499; (c) H. Bienayme, C. Hulme, G. Oddon, P. Schmitt, Chem-Eur. J., 2000, 6, 3321–3329.
[4] A.V. Stachulski, N.G. Berry, A.C.L. Low, S.L. Moores, E. Row, D.C. Warhurst, I.S. Adagu, J.F. Rossignol, J. Med. Chem., 2006, 49, 1450-1454.
[5] (a) W.P. Smith, L.S. Sollis, D.P. Howes, C.P. Cherry, D.I. Starkey and N.K. Cobley, J. Med. Chem., 1998, 41, 787-797; (b) N. Foloppe, L.M. Fisher, R. Howes, A. Potter, A.G.S. Robertson, A.E. Surgenor, Bioorg. Med. Chem., 2006, 14, 47924802; (c) F.M. Abdelrazek, P. Metz, N.H. Metwally, S.F. El-Mahrouky, Arch. Pharm., 2006, 339, 456-460; (d) S.C. Kuo, L.J. Huang, H. Nakamura, J. Med. Chem., 1984, 27, 539-544.
[6] (a) H. Junek, H. Aigner, Chem. Ber., 1973, 106, 914-921; (b) V.K. Ahluwalia, A. Dahiya, V. Indian, Ind. J. Chem., Sect. B, 1997, 36, 88-90.
[7] (a) P. Prasanna, S. Perumal, J.C. Menendez, Green Chem., 2013, 15, 1292-1299. (b) S. Muramulla, C.G. Zhao, Tetrahedron Lett., 2011, 52, 3905-3908; (c) N.J. Parmar, H.A. Barad, B.R. Pansuriya, N.P. Talpada, RSC Adv., 2013, 3, 8064-8070.
[8] (a) Y.M. Litvinov, A.A. Shestopalov, L.A. Rodinovskaya, A.M. Shestopalov, J. Comb. Chem., 2009, 11, 914-919; (b) G. Vasuki, K. Kumaravel, Tetrahedron Lett., 2008, 49, 5636-5638; (c) J.M. Khurana, B. Nand, B.S. Kumar, Synth. Commun., 2011, 41, 405-410; (d) H. Mecadon, M. R. Rohman, I. Kharbangar, B. M. Laloo, I. Kharkongor, M. Rajbangshi, B. Myrboh, Tetrahedron Lett., 2011, 52, 3228-3231; (e) K. Kanagaraj, K. Pitchumani, Tetrahedron Lett., 2010, 51, 3312-3316; (f) K. Ablajan, L.J. Wang, A. Tuoheti, Y. Kelimu, Lett. Org. Chem., 2012, 9, 639-643; (g) J. M. Khurana, A. Chaudhary, Green Chem. Lett. Rev., 2012, 5, 633-638; (h) X. J. Li, H.Y. Guo, Chin. J. Org. Chem., 2012, 32, 127-132; (i) A. R. Moosavi-Zare, M.A. Zolfigol, E. Noroozizadeh, M. Tavasoli, V. Khakyzadeh, A. Zare, New J. Chem., 2013, 37, 4089-4094; (j) R.-Y. Guo, Z.-M. An, L.-P. Mo, S.-T. Yang, H.-X. Liu, S.-X. Wang, Z.-H. Zhang, Tetrahedron, 2013, 69, 9931-9938; (k) M. Bihani, P. P. Bora, G. Bez, H. Askari, ACS Sustainable Chem. Eng., 2013, 1, 440-447; (l) H. Mecadon, M.R. Rohman, M. Rajbangshi, B. Myrboh, Tetrahedron Lett., 2011, 52, 2523-1525; (m) S. Paul, K. Pradhan, S. Ghosh, S.K. De, A. R. Das, Tetrahedron, 2014, 70, 6088-6099. (n) A. Saha, S. Payra, S. Banerjee, Green Chem., 2015, 17, 2859-2866.
[9] (a) S.B. Dongare, H.V. Chavan, P.S. Bhale, Y.B. Mule, A.S. Kotmale, B.P. Bandgar, Chin. Chem. Lett. 2015, 27, 99-100; (b) H.V. Chavan, S.B. Babar, R.U. Hoval, B.P. Bandgar, Bull. Korean Chem. Soc. 2011, 32, 3963-3966; (c) H.V. Chavan, L.K. Adsul, B.P. Bandgar, J. Chem. Sci. 2011, 123, 477-483; (d) H.V. Chavan, B.P. Bandgar, ACS Sustainable Chem. Eng. 2013, 1, 929-936; (e) S.S. Jalde, H.V. Chavan, L.K. Adsul, V.D. Dhakane, B.P. Bandgar, Synth. React. Inorg. Met. Org. Chem. 2014, 44, 623-626; (f) B.P. Bandgar, B.L. Korbad, S.A. Patil, S.B. Bandgar, H.V. Chavan, B.S. Hote, Aust. J. Chem. 2008, 61, 700-703; (g) V.D. Dhakane, S.S. Gholap, U.P. Deshmukh, H.V. Chavan, B.P. Bandgar, C. R. Chimie 2014, 17, 431-436; (h) H.V. Chavan, D.K. Narale, C. R. Chimie 2014, 17, 980-984; (i) B.P. Bandgar, L.K. Adsul, H.V. Chavan, S.N. Shringare, B.L. Korbad, S.S. Jalde, S.V. Lonikar, S.H. Nile, A.L. Shirfule, Bioorg. Med. Chem. 2012, 20, 5649-5657; (j) B.P. Bandgar, S.A. Patil, J.V. Totre, B.L. Korbad, R.N. Gacche, B.S. Hote, S.S. Jalde, H.V. Chavan, Bioorg. Med. Chem. Let. 2010, 20, 2292-2296.