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Abstract
In this paper, the quantitative structure activity-relationship (QSAR) of the CCR2b
receptor inhibitors was scrutinized. Firstly, the molecular descriptors were calculated
using the Dragon package. Then, the stepwise multiple linear regressions (SW-MLR)
and the genetic algorithm multiple linear regressions (GA-MLR) variable selection
methods were subsequently employed to select and implement the prominent
descriptors having the most significant contributions to the activities of the molecules.
A combined data set including numerical values of inhibition activity data (IC50) of
103 CCR2b receptor derivatives was adopted for our simulations. This study revealed
that both SW-MLR and GA-MLR methods consisted of six molecular descriptors.
The adopted descriptors belong to topological, charge, RDF and atom-centered
fragments classes. A comparison of results by the two methodologies indicated the
superiority of GA-MLR over the SW-MLR method. The authenticity of the proposed
model (GA-MLR) was further confirmed using the cross-validation, validation
through an external test set and Y-randomization.
Keywords: Quantitative structure-activity relationship (QSAR); CCR2b receptor
inhibitors; genetic algorithm (GA); stepwise (SW); multiple linear regression (MLR);
molecular descriptor.

Introduction
Chemokines are a family of low
molecular weight secreted proteins
acting as leukocyte specific
chemoattractants. C-C chemokine
receptors type 2 (CCR2) belonging to
the G protein coupled
receptors (GPCRs) family are
expressed on monocytes, macrophages,
basophiles, mast cells and T
lymphocytes. There are two
alternatively spliced forms of CCR2

receptors, namely CCR2a and CCR2b
which differ only in their carboxyl-
terminal tails. These receptors play
important roles in the recruitment of
monocytes/macrophages, T cells, and
are directly related to many diseases
such as inflammation, HIV and
pulmonary fibrosis. CCR2 receptors are
implicated in a diversity of
inflammatory responses by interaction
with chemokine receptors situated in
the cell surface of leukocytes followed
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by chemotaxis and infiltration into the
adjacent tissue [1].

Monocyte chemotactic protein-1
(MCP-1) is a member of the CC-
chemokines family and has been
implicated in the acute diseases such as
atherosclerosis[2], rheumatoid arthritis
[3], glomerulonephritis [4] and multiple
sclerosis [5]. Using a trial and error
approach to evaluate the activity and
property of chemical compounds and
medicines is a time-consuming and
costly process. The quantitative-
structure activity relationship (QSAR)
methodologies are powerful ways to
overcome this restriction. These
techniques are usually based on
statistically determined linear or non-
linear models that correlate the
chemical behavior of compounds and
their descriptors. The main interest in
development of predictive QSAR
models is owing to their high capability
of predicting activities and/or properties
of compounds, particularly for those
which are experimentally immeasurable
for many reasons, including their
instability, toxicity or cost. In fact,
QSARs create mathematical
relationships between chemical,
physical, biological or environmental
activities of measurable and
computable parameters such as
physicochemical, stereochemical, and
topological descriptors [6].

Nowadays, the use of statistical
approaches has attracted an increased
interest [7]. There are various tools to
control, optimize and predict diverse
physical and chemical properties of

broad sets of organic compounds. Of
these, one is the genetic algorithms
(GA) [8-10] and other ones are the
stepwise (SW) [11-13] and particle
swarm optimization (PSO) [14,15]
feature selection methods. The
application of QSAR technique usually
requires a reliable variable selection
method for building well-fitted models.
In this work, we used the genetic
algorithm (GA) and stepwise (SW)
methods for the variable selection in
combination with multiple linear
regression (MLR) strategy. According
to the obtained results, these
approaches enable us to get satisfactory
statistical parameters engaged with the
simulation of inhibition activities (IC50)
of CCR2b receptors. Moreover, to the
best of our knowledge, this is the first
report concerning predictions of
activities of CCR2b receptors using
SW-MLR and GA-MLR methods.
Computational section
Data set and methods
An integrated data set consisting of
inhibition activities (IC50) of 103
homopiperazine and diamine
derivatives selected from three
recently-published papers was used for
QSAR analyses [16-18]. The inhibition
activity data [IC50 (nM)] for the CCR2b
receptor derivatives were converted to a
logarithmic scale pIC50 [-log IC50 (M)]
and subsequently used for exploring
QSARs as the response variables. The
chemical structures of the studied
compounds and their corresponding
pIC50 values are displayed in Table1.
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Table 1. Chemical structure and the corresponding experimental and predicted pIC50 values

using SW-MLR and GA-MLR methods

No. R1 R2 Exp.
SW-

MLR

GA-

MLR

N
N R

1 N - 4.96 4.58 4.61

2
NO2

- 4.72 4.80 4.88

3
SO2Me

- 4.89 4.51 4.72

4a
CN

- 4.37 4.64 4.64

N
N

SO2Me

R

R OH

5 H - 5.39 5.16 5.43

6 4-NMe2 - 4.35 4.58 4.91

7a 4-OH - 4.68 5.62 5.17

8 3-OH - 5.82 5.63 5.60

9 4-F - 5.15 5.57 5.24

10 3-F - 4.47 5.49 5.32

11 4-Cl - 4.96 5.65 5.44

OH N
N

SO2Me

R
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No. R1 R2 Exp.
SW-

MLR

GA-

MLR

12 3-OH - 6.15 5.46 5.67

13 3-CH2OH - 5.40 5.34 5.47

14a 3-NH2 - 5.38 5.57 5.84

15 3-NHMe - 5.30 5.46 5.47

16a 3-OMe - 5.10 5.35 5.42

17 3-F - 4.92 5.29 5.25

18a 3-Me - 4.80 5.37 5.74

Table 1. Continued

No. R1 R2 Exp.
SW-

MLR

GA-

MLR

OH N
N

SO2Me

R

HO

19 3-F - 5.62 5.53 5.70

20 3-Cl - 5.35 5.58 5.23

21 4-F - 5.82 5.49 4.85

22 4-Cl - 5.82 5.67 5.59

23 3,5-DiF - 5.03 5.64 5.18

OH
N

N
R

HO

24
SO2NH2

- 5.82 5.45 5.68
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No. R1 R2 Exp.
SW-

MLR

GA-

MLR

OH N
N

SO2Me

R

HO

25a
O

N
H

H
N

O

S
CH3 - 5.19 4.05 4.23

26
O

N
H

H
N

O

S

- 4.55 3.99 4.17

N
N

R

Cl

27 O

N
H

H
N

O

S
CH3

- 5.13 4.94 4.95

28
O

N
H

H
N

O

S

- 4.52 4.09 4.13

NH-R2

R1-N

29a
H
N

N
H SO

O

4.48 4.45 4.34

30
Cl

H
N

N
H SO

O

4.39 4.70 4.93

Table 1. Continued
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No. R1 R2 Exp.
SW-

MLR

GA-

MLR

OH N
N

SO2Me

R

HO

31
H
N

N
H SO

O

4.77 5.17 4.99

32
H
N

N
H SO

O

Cl
5.11 5.05 5.32

R1-N

NH-R2

33

H
N

N
H SO

O

4.59 4.78 5.13

Cl

N

NH-R

34a

O O

- 4.96 5.11 4.82

35 N
H

O O

- 4.66 4.85 4.63

36
H
N

O

O

- 4.38 4.87 4.96
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Table 1. Continued

No. R1 R2 Exp.
SW-

MLR

GA-

MLR

38
H
N

O

O

CF3
- 6.43 5.86 5.92

Cl

N

NH-R

39

O O

- 4.72 4.20 4.42

40 N
H

O O

- 4.40 4.16 4.37

41
H
N

O

O

- 4.18 4.31 4.23

42
H
N

O

O

- 4.85 4.73 4.78

43
H
N

O

O

CF3
- 5.64 5.63 6.02

N
NH-R

Cl

37
H
N

O

O

- 5.16 5.30 5.37
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Table 1. Continued

No. R1 R2 Exp.
SW-

MLR

GA-

MLR

44

O O

- 4.30 4.73 4.47

45 N
H

O O

- 4.19 4.76 4.35

Table 1. Continued

No. R1 R2 Exp.
SW-

MLR

GA-

MLR

46
H
N

O

O

- 4.96 4.85 4.74

47
H
N

O

O

- 5.26 5.32 5.42

48a H
N

O

O

CF3
- 6.15 6.07 5.91

N

Cl

NH-R

49

O O

- 4.06 4.03 4.18

50a
N
H

O O

- 4.13 4.32 4.41
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Table 1. Continued

No. R1 R2 Exp.
SW-

MLR

GA-

MLR

51
H
N

O

O

- 4.77 4.78 4.72

52
H
N

O

O

CF3
- 6.18 5.60 5.84

N
N
H

H
N

O

O

CF3
R

53 H - 6.16 6.01 6.11

54 2-Cl - 6.20 6.22 6.24

55 2-CH3 - 6.02 6.46 6.68

56 2-OCH3 - 5.87 6.48 6.48

57 3-CH3 - 5.51 6.33 6.51

58 3-OCH3 - 5.50 6.35 6.29

59 4-Cl - 6.74 6.13 6.23

60 4-CH3 - 6.94 6.71 6.70

61 4-OCH3 - 6.94 6.69 6.63

62 4-Et - 7.23 6.98 7.02

63a 4-Br - 6.78 6.56 6.76

64 4-Vinyl - 6.92 6.59 6.72

65 4-CH3S - 6.69 6.65 6.53

66a 4-OH - 6.65 6.59 6.64

67 4-NHAc - 6.52 6.96 6.05
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Table 1. Continued

No. R1 R2 Exp.
SW-

MLR

GA-

MLR

68 4-OCF3 - 6.21 7.07 6.47

69a 4-F - 6.02 6.77 6.40

70a 4-NO2 - 5.81 6.97 6.76

71a 4-CN - 5.58 6.29 6.12

72 2,4-(CH3)2 - 7.27 6.71 6.96

73 2,4-Cl2 - 6.52 6.41 6.42

74 4-OH, 3-OCH3 - 6.82 6.83 6.78

75 2-Naphthyl - 6.12 5.91 5.74

N N
H

H
N

O

O

Cl
R

76 3-CH3 - 5.62 5.33 5.50

77 3-Cl - 5.62 5.32 5.36

78 4-CH3 - 5.00 5.64 5.66

79 3-F - 5.36 5.31 5.45

80 3-Br - 6.11 5.94 5.51

81 3-OCF3 - 6.31 6.20 6.15

82 3-NO2 - 6.08 5.98 5.93

83 2-NH2, 5-NO2 - 6.68 6.54 6.62

84 2-NH2, 5-Cl - 6.14 6.02 6.03

85 2-NH2, 5-Br - 6.19 6.69 6.47

86 2-NH2, 5-I - 6.51 6.82 6.25

87 2-NH2, 5-OCF3 - 7.06 7.17 6.63
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Table 1. Continued

No. R1 R2 Exp.
SW-

MLR

GA-

MLR

88a 2-NH2, 5-CF - 7.59 7.23 7.20

N N
H

H
N

O

O

R

F3C

NH2

89a 4-Cl - 7.59 7.47 7.53

90a 4-Br a - 6.94 7.58 7.28

91 4-CH3 - 7.70 7.25 7.51

92a 4-Et - 7.96 7.44 7.53

93 4-Vinyl - 7.72 7.54 7.53

94 4-OCH3
a - 7.70 7.53 7.48

95 4-OH - 7.38 7.39 7.44

96a 4-Cl, 3-NH2 - 8.39 7.82 8.06

97 4-CH3, 3-NH2 - 8.21 8.05 8.24

98 4-OCH3, 3-NH2 - 8.28 8.24 8.43

99 4-OH, 3-NH2 - 7.85 7.91 8.03

100a 4-OCH3, 3-OH - 7.28 7.85 7.84

101 4-OH, 3-OCH3 - 7.41 7.57 7.40

102 2,4-(CH3)2 - 8.49 7.91 8.22

103 2,4-Cl2 - 7.02 7.43 7.62

aUsed as test set

Software
A Pentium IV personal computer with
the Windows XP operating system was
used. The geometry optimization of
compounds using the (MM+) and

(AM1) methods was performed using
the HYPERCHEM 7.0 package. The
GA-MLR and the other advanced
calculations were performed in the
MATLAB 7.0 environment.



M. Nekoei / Iranian Chemical Communication 5 (2017) 79-98

Page | 90

Descriptors calculation and selection
The calculation and selection of the
descriptors as reliable parameters
representing the chemical structures
from diverse points of view are of
prime importance in QSAR-based
simulations. Dragon software was used
to calculate chemical descriptors in a
broad spectrum of such studies. It
should be pointed out that calculation
of these descriptors is easy and fast.
Using Dragon software, 1481
descriptors for each molecule were
calculated. In a preliminary step,
constant and near constant variables
were eliminated because they do not
interpret meaningful concepts related to
the structure of compounds in the data
set. Variables with correlation
coefficients higher than 0.9 were
selected for developing suitable models.
Finally, the remaining descriptors were
collected in an n × m data matrix,
where n = 103 and m = 356 refer to the

numbers of compounds and descriptors,
respectively. Among the descriptors
mentioned earlier, the most significant
molecular descriptors were identified
using the genetic algorithm (GA) and
stepwise (SW) methods.
Genetic algorithm
The genetic algorithms (GAs) take
inspiration from natural selection,
Darwin’s evolutionary theory and other
genetic functions, e.g. cross-over and
mutation. GAs have a great potential
for solving certain types of difficult
problems in fast, suitable and credible
ways [19]. Nowadays, GA is one of the
most widely used variable selection
methods. It was developed by John
Holland in 1975 and in recent years it
has been utilized to resolve and
optimize a variety of problems [20-24].
In Figure 1, a flowchart on genetic
algorithm process has been
demonstrated to give a deeper insight to
the process operation.

Figure 1. General flowchart of the genetic algorithm approach

Start

Create initial population

Compute objective function of each chromosome

Crossover

Mutation

Create new population

End
Yes

No

Conversion

check
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To select the most related
descriptors, the evolution of the
population was simulated [25-27]. The
first step in GA performance is the
random selection of individuals for
generation of the first population. Each
individual in the population, was
defined by a chromosome of binary (0
& 1) values. Number of genes equals
selected descriptors. For the genes
encoded with binary system, if gene
was given the value of 1, its
corresponding  descriptor was included
in the subset; otherwise, it was given
the value of zero [28]. The number of
the genes with the value=1 was kept
relatively low to have a small subset of
descriptors. The operators used here
were cross-over and mutation. The
population size was varied over the
range 50-250 for different GA runs. For
a typical run, the evolution of the
generation was stopped when 90% of
the generations achieved the same
fitness.
Results and discussion
In this attempt, we employed both the
GA-MLR and SW-MLR techniques for
the selection of the most significant
descriptors. In the first step, we
employed the variable elimination step
prior to the MLR analysis followed by
the use of SW selection to model the
structure-activity relationship with a
different set of descriptors. Training
and test sets including 82 (80%) and 21
(20%) compounds, respectively, were
randomly selected from a date set of
103 compounds. The SW-MLR
analysis led to the derivation of a model
including six variables. The linear
model is described by the following
equation:
pIC50= -19.296 (±4.523) + 25.306
(±6.985) X0A + 0.119 (±0.016)
PCWTe + 3.388 (±0.836) Jhetp +0.036
(±0.008) RDF065m - 0.315 (±0.064)

RDF145v - 0.087 (±0.030) H-052
(eq. 1)
Ntrain= 82, R2

train=0.887, RMSEtrain=
0.372, Q2

LOO=0.858, Q2
LGO=0.838,

Q2
BOOT=0.850, F=97.855, Ntest=21,

R2
test=0.807, RMSEtest= 0.573

In this equation, N is the number of
compounds, R2 is the squared
correlation coefficient, RMSE is the
root mean square error, Q2

LOO, Q2
LGO

and Q2
BOOT are the squared cross-

validation coefficients for “leave one
out,” “leave group out” and
“bootstrapping,” respectively, and F is
the Fisher F statistic.
In another part of our study, the genetic
algorithm was employed as the variable
selection procedure to select the best
variables, while the MLR was carried
out to build the model. This equation
and its statistical parameters are:

pIC50= -16.25 (±5.382) + 44.168
(±6.261) X0A - 112.295 (±17.837)
X5A - 0.095 (±0.015) MDDD + 0.092
(±0.014) PCWTe - 0.241 (±0.049)
RDF145m + 0.062 (±0.014) RDF065p
(eq. 2)

Ntrain= 82, R2
train=0.895, RMSEtrain=

0.358, Q2
LOO=0.871, Q2

LGO=0.833,
Q2

BOOT=0.867, F=106.387, Ntest=21,
R2

test=0.862, RMSEtest= 0.477

Subsequently, the built model was
used to compute the pIC50 values of the
compounds present in the test set. In
accordance with the GA-MLR
simulation, the R2 values for training
and test sets were found to be 0.895 and
0.862, respectively. Therefore, when
using GA-MLR the coefficient of
determination (R2) for the training and
test sets are more than those obtained
by SW-MLR.

Of the six descriptors used by SW-
MLR, two (X0A and Jhetp), two
(RDF065m and RDF145v), one
(PCWTe) and one (H-052) respectively
belong to topological class, RDF,
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charge and atom-centred fragments
descriptors. On the other hand, in the
model developed using GA-MLR, half
of descriptors are topological
descriptors (X0A, X5A and MDDD),
while two (RDF145m and RDF065p)
and one (PCWTe) are related to RDF
and charge descriptors. Another
important point is implementation of
six molecular descriptors, of which two
(X0A and PCWTe) are common in both
models.

The experimental and predicted
values based on GA-MLR and SW-
MLR models are shown in Table 1. In
addition, the general statistical

parameters of the two models are
summarized in Table 2. A simple
comparison of the proposed linear
models (SW-MLR and GA-MLR)
models shows that the RSME of GA-
MLR method for both training and test
sets were lower than the RMSE of SW-
MLR method, whereas the R2 and
Q2

LOO of GA-MLR were higher than
those of SW-MLR (Table 2). From
Table 2, it can be seen that GA-MLR
model also gives higher F values;
therefore, one can conclude that the
GA-MLR is more robust and better
than the SW-MLR.

Table 2. Statistical results of SW-MLR and GA-MLR models

Training set Test set

R2 RMSE F R2 RMSE F

SW-MLR 0.887 0.372 97.855 0.807 0.573 10.130

GA-MLR 0.895 0.358 106.387 0.862 0.477 14.083

As can be seen from equations 1
and 2 and their results, the value of R2

is enhanced in test set over the range
0.807-0.862 by SW-MLR and GA-
MLR models, respectively. From the
results, it is clear that the MLR
technique combined with SW and GA
variable selection procedures generated
productive QSAR models for predicting
the pIC50 of compounds. However, in

view of the superiority of GA-MLR, we
focused on it in further studies.

Figure 2 shows the predicted pIC50

values versus the experimental ones
using the GA-MLR modeling approach.
Accordingly, a convergency of points
towards the most probable line
(R2

train=0.895; R2
test=0.862) is seen for

both training and test sets.
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Figure 2. The predicted versus the experimental pIC50 values by the GA-MLR modeling

An important step in QSAR study
is evaluating predictive capability of
models. In this study, we employed
cross-validation utilizing different
variables, such as “leave one out”
(LOO) and “leave group out” (LGO),
the number of compounds (N), the
coefficient of determination (R2), the
root mean square error (RMSE) and the
variance ratio (F). The Q2

LOO was
calculated by the following equation:

2
exp

2 1

2

1

( )
1 1

( )

n

pred
i

LOO n

pred pred
i

y y
PRESS

Q
SSR y y






   






(eq. 3)

The yexp and ypred values are the
experimental and predicted values for

training set, and predy is the mean

experimental value of the samples in
the training set.

The sturdiness of the proposed
models and its predictive abilities were
assured through the high Q2

BOOT

approach[29]. The results of the LOO
(Q2

LOO = 0.871) and the LGO (Q2
LGO =

0.833) cross-validation tests and
bootstrapping (Q2

Boot= 0.867) reveal
that the proposed model is of
satisfactory quality. Therefore, since all
of the validation techniques confirm the

validity of the GA-MLR model, it can
be used to predict the inhibition activity
of the components.

To evaluate the applicability
domain (AD) of a model, application of
a plot of standardized cross-validated
residuals against leverage values,
namely the William plot, has been
proposed by Gramatica [30]. This plot
is primarily employed to recognize the
response outliers and structurally
influential compounds in the model.
The leverage indicates the distance of a
compound from the centroid of X and
for a compound in the original variable
space is defined as[31]:

  i
TT

ii xXXxh
1

 (eq. 4)

where xi is the descriptor vector of the
considered compound and X is the
descriptor matrix derived from the
training set descriptor values. The
warning leverage (h*) is defined as [32]

h* = 3 (p+1)/ n
(eq. 5)

where n and p are the number of
training compounds and number of
predictor variables, respectively. The
presence of outliers and compounds
structurally influential in determining
model parameters (i.e. compounds with
high leverage value (h) greater then

4
4.5
5
5.5
6
6.5
7
7.5
8
8.5
9

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
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MLR

Experimental(pIC50 )

P
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(p
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warning leverage (h*)), was verified by
the William plot acquired by plotting
hat values versus standardized
residuals. From Figure 3, it is
immediately evident that two
compounds (No. 5 and No. 21 in the
training set) have leverage values
higher than the warning leverage h*
value, thus they can be regarded as
structural outliers. Fortunately, in two

aforementioned cases, the respective
data predicted by the model are good;
thus they are considered as ‘‘good
leverage’’ compounds. In summary, the
prediction plot (Figure 2) and
applicability domain (AD) plot (Figure
3), confirm the suitability of the built
model and appropriate divisions of the
whole data set into training and test
sets.

Figure 3. William plot of GA-MLR model

A brief description of the selected
descriptors by GA-MLR model is
summarized in Table 3. As this Table
shows, six utilized descriptors for
prediction of pIC50 of CCR2b receptors
include X0A, X5A, MDDD, RDF145m
and RDF065p. The first, second and
third implemented molecular
descriptors in the developed GA-MLR
model, namely X0A (Average
connectivity index chi-0) and X5A
(Average connectivity index chi-5),
MDDD (mean distance degree
deviation) belong to the topological
class. The positive and negative signs
attributed to these variables denote,
respectively, their direct and inverse
relationships with the pIC50 value.
Subsequently, the increase in these
average connectivity indices as well as
mean distance degree deviation of the
molecules results in an increase and

decrease in their pIC50, respectively.
Topological descriptors include valence
and non-valence molecular connectivity
indices calculated from the hydrogen-
suppressed formula of the molecule,
encoding information about the size,
composition and the degree of
branching of a molecule. In fact, these
descriptors are based on the graphical
representations of the molecules and are
considered as numerical quantifiers of
molecular topology calculated through
the application of algebraic operators to
matrices representing molecular graphs
whose values are independent of vertex
numbering or labeling. Topological
descriptors are generally sensitive to
one or more structural features of the
molecule involving size, shape,
symmetry, branching and cyclicity,
encoding chemical information
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concerning atom type and bond
multiplicity.
The fourth descriptor is PCWTe. It
occurs among the charge descriptors
and implies a partial charge weighted
topological electronic descriptor. The
positive sign of PCWTe shows its
reinforcement impact on pIC50.

RDF145m and RDF065p are the
fifth and sixth descriptors appearing in
the model. RDF145m represents the
Radial distribution function – 14.5 /
weighted by atomic masses whereas
RDF065p is the Radial distribution
function – 6.5 / weighted by atomic
polarizabilities. RDF145m and
RDF065p are two members of the

radial distribution function (RDF)
descriptors. The RDF descriptors are
based on the geometrical interatomic
distance and constitute a radial
distribution function code[33].

RDF145m descriptors possess a
negative sign, indicating that pIC50 is
inversely related to this descriptor;
therefore, increasing the RDF145m of
molecules leads to an appreciable
decrease in their respective pIC50

values. On the other hand, the other
radial distribution function (RDF)
descriptor namely RDF065p has a
positive sign. Therefore, it exerts a
constructive influence on pIC50 value.

Table 3. Concise description of the six parameters selected by the proposed GA-MLR
method

Descriptor Chemical meaning MFj
a VIF b

Constant Intercept - -

X0A Average connectivity index chi-0 1.433 2.304

X5A Average connectivity index chi-5 -0.420 2.818

MDDD Mean distance degree deviation -0.156 3.669

PCWTe Partial charge weighted topological electronic

descriptor

0.098 1.991

RDF145m Radial distribution function – 14.5 / weighted by

atomic masses

-0.005 1.261

RDF065p Radial distribution function – 6.5 / weighted by

atomic polarizabilities

0.050 3.090

aMean effect
bVariation inflation factors

In order to appraise the robustness
of the model, the Y-randomization test
was employed [34]. Accordingly, the
dependent variable vector (pIC50) is
randomly shuffled and a new QSAR
model is built using the variable matrix.
The newly obtained models are

anticipated to have low R2 and Q2

values showing that the good results in
the original model used were not due to
a chance correlation or structural
dependency of the training set. The
results of the Y-randomization test are
presented in Table 4.  The correlation
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matrix of the six selected descriptors is
included in Table 5 and indicates the
linear correlation coefficient value of
each pair of descriptors. As seen from

numerical values of R2 from bivariate
analysis, selected descriptors behave
independently in the proposed model.

Table 4. The R2
train and Q2

LOO values after several Y-randomization tests

Iteration R2
train Q2

LOO

1 0.099 0.000
2 0.027 0.082
3 0.068 0.000
4 0.088 0.000
5 0.081 0.000
6 0.077 0.000
7 0.037 0.065
8 0.055 0.013
9 0.061 0.005
10 0.125 0.015

Table 5. Correlation coefficient matrix of the selected descriptors by GA-MLR

X0A X5A MDDD PCWTe RDF145m RDF065p

X0A 1

X5A -0.424 1

MDDD 0.093 -0.733 1

PCWTe 0.640 -0.145 -0.056 1

RDF145m -0.107 -0.201 0.284 -0.347 1

RDF065p -0.011 -0.624 0.801 -0.001 0.131 1

To verify the inter correlation of
descriptors, variance inflation factor
(VIF) analysis was performed, which
can be calculated as follows:

2

1

1-
VIF

r
 , (eq. 6)

where r is the multiple correlation
coefficient.  The corresponding VIF
values of the six descriptors are shown
in Table 3. If a value of VIF falls within
the range 1-5, the related model is
acceptable. As can be seen in Table 3,
all of the variables have VIF values of

less than 5, indicating that the obtained
model is significant.

To examine the relative importance
as well as the contribution of each
descriptor in the model, the value of the
mean effect (MFj) was calculated for
each descriptor [35], which is defined
as:

1

n

j ij
i

j m n

j ij
i i

d
MF

d








 
(eq. 7)
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The MFj value indicates the
relative importance of a descriptor,
compared with the other descriptors in
the model. The mean effect values of
each molecular descriptor are shown in
Table 3. The results explicitly argue
that the X0A topological descriptor
with the highest MFj value has the most
effect in the linear constructed model.
Conclusion
Quantitative relationships between
molecular structures and CCR2b
inhibitory activities of 103 amine
derivatives were discovered by two
linear regression methods (SW-MLR
and GA-MLR). Both methods resulted
in training sets with good statistical
significance. Results show that GA-
MLR has a superior power in modeling
this relationship. The exactness and
prediction capability of the proposed
models is illustrated using various
criteria such as cross-validation and Y-
randomization. The prediction results
and the experimental values are in good
agreement. In addition, the average
connectivity index, mean distance
degree deviation, partial charge
weighted topological electronic
descriptor and radial distribution
function are seen to be important
factors controlling the inhibitory
activity of CCR2b inhibitors. The
proposed method also shows that
structural features are related to the
inhibitory activities of compounds.
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