Document Type : Original Research Article

Author

Chemistry Department, Payame Noor University, 19395-4697 Tehran, Iran.

Abstract

The therrmodynamic parameters and equilibrium constant of displacement of dimethy sulfide by 3-carboaldehyde pyridine as N-donor ligand in cis-[Pt(4-MeC6H4)2(SMe2)2] complex have been measured using UV vis spectroscopy in acetone, dichloromethane and benzene at various temperatures (T=15-20 °C) and compared with previous my reported about similar reaction. ΔHo (KJ.mol-1) of the mentioned reaction in acetone has been 7.158 while obtained less in dichloromethane (4.109 ) and more in benzene(9.96). The entropy of the reaction has been obtained 86.86 J.mol-1.K-1 in acetone , while calculated less in CH2Cl2 (73.29 J.mol-1.K-1) and more in last solvent (97.40 J.mol-1.K-1). Also, the Gibbs energy, ΔG (J.mol-1), of the reaction obtained -18738.79, -17741.55 and -19043.06 respectively, with the same order. In all three solvents, the values of enthalpy and entropy change have been positive and decreased as the donor number of the solvents decreased.

Graphical Abstract

Dimethyl sulfide for 3-carboaldehyde pyridine displacement in a platinum(II) complex: Donor number effect

Keywords

Main Subjects

[1] C. Sacht, M.S. Datt, Polyhedron, 2000, 19, 1347-1354.
[2] H.V.K. Diyabalanage, M.L. Granda, J.M. Hooker, Cancer Letters, 2013, 329, 1-8.
[3] L-J. Li, B. Fu, Y. Qiao, C. Wang, Y-Y. Huang, C-C. Liu, C. Tian, J-L. Du, Inorg. Chim. Acta, 2014, 419, 135-140.
[4] A. Turner, L. Mascorda, Chemosphere, 2015, 119, 415-422.
[5] A. Anzellotti, S. Stefan, D. Gibson, N. Farrell, Inorg. Chim. Acta, 2006, 359, 3014-3019.
[6] S. Iwatsuki, K. Ishihara, K. Matsumoto, Sci. Technol. Adv. Mater., 2006, 7, 411-424.
[7] P. Jarzynka, A. Topolski, M. Uzarska, R. Czajkowski, Inorg.a Chim. Acta, 2014, 413, 60-67.
[8] S.M. Nabavizadeh, H.R. Shahsavari, M. Namdar, M. Rashidi, J. Organomet. Chem., 2011, 696, 3564-3571.
[9] M. Becker, H. Elias, Inorg. Chim. Acta, 1986, 116, 47-62.
[10] G. Alibrandi, G. Bruno, S. Lanza, D. Minniti, R. Romeo, M.L. Tobe, Inorg. Chem., 1987, 26, 185-190.
[11] J.P. Birk, J. Halpern, A.L. Pickard, JACS, 1968, 90, 4491-4492.
[12] S.M. Nabavizadeh, H. Amini, F. Jame, S. Khosraviolya, H.R. Shahsavari, F. Niroomand Hosseini, M. Rashidi, J. Organomet. Chem., 2012, 2012,698, 53-61.
[13] E. Traversa, J.L. Templeton, H.Y. Cheng, M. Mohadjer Beromi, P.S. White, N.M. West, Organometallics, 2013, 32, 1938-1950.
[14] D. Giardina-Papa, F.P. Intini, C. Pacifico, G. Natile, Inorg. Chem., 2013, 52, 13058-13067.
[15] M. Albrecht, A.L. Spek, G. van Koten, JACS, 2001, 123, 7233-7246.
[16] M. Rashidi, S.M. Nabavizadeh, A. Akbari, S. Habibzadeh, Organometallics, 2005, 24, 2528-2532.
[17] R.A. Ruhayel, B. Corry, C. Braun, D.S. Thomas, S.J. Berners-Price, N.P. Farrell, Inorg. Chem., 2010, 49, 10815-10819.
[18] A. Akbari, M. Ahmadi, B. GolZadeh, E-J. Chem., 2012, 9, 1230-1237.
[19] A. Akbari, Shiraz university, Iran, 2005.
[20] Synergy Software company, KaleidaGraph, 2005, http://www.synergy.com/wordpress
[21] K. Sarkar, B. Singh Garg, Thermochim. Acta, 1987, 113, 7-14.
[22] E.C. Alyea, J. Campo, Polyhedron, 1998, 17, 275-279.
[23] C.S. Kim, S.M. Oh, Electrochim. Acta, 2000, 45, 2101-2109.
[24] S.S. Sekhon, N. Arora, H.P. Singh, Solid State Ionics, 2003, 160, 301-307.
[25] R.M. Galvín, M. Angulo, J.M.R. Mellado, Electroanalysis, 1997, 9, 653-654.