Document Type : Original Research Article

Authors

1 imam hossein university

2 Islamic Azad University of Qaemshahr, iran

Abstract

In this work, the practicality of catalytic surfaces of nano-structured Co3O4 and MnCo2O4 for the adsorption and neutralization reactions of dimethyl methyl phosphonate (DMMP) as an toxic agricultural organo-phosphorous pesticide has been investigated. The Co3O4 and MnCo2O4 NPs have been successfully prepared by precipitation method using cobalt nitrate and manganese nitrate as the precursors and then characterized by SEM-EDX and XRD. The application of the synthesized nanoparticles as solid catalysts for the adsorption and neutralization of dimethyl methyl phosphonate (DMMP) was assayed in different solvents and monitored by 31PNMR and IR analyses. The experimental results have shown that 39%, 47% and 62% of DMMP have been adsorbed on the surface of Co3O4 nanoparticles in isopropanol, chloroform and decane solvents after 5 h, respectively. While, higher amounts (80%, 92% and 100%) were removed in the same solvents respectively, when MnCo2O4 nanoparticles were chosen as the catalytic surface. This demonstrates that the choice of nanoparticle and solvent (MnCo2O4 nanoparticles and decane) have a great impact on the neutralization of DMMP.

Graphical Abstract

Adsorption and Neutralization Chemistry of Dimethyl Methyl Phosphonate (DMMP) as an Organo-Phosphorous Pollutant (OPP) on the Surface of Nano-Structured Co3O4 and MnCo2O4 Catalysts

Keywords

Main Subjects

[1] C. Fest, K. J. Schmidt, The Chemistry of Organophosphorus Pesticides. Berlin, 1973.
[2] F. Ahmed, P. K. Gutch, K. Ganesan, R. Vijayaraghavan, J. Therm. Anal. Calorim., 2012, 107, 141–147.
[3] G. Wulfsberg, Inorganic Chemistry, University Science Books, 691(2000).
[4] C.N.R. Rao, J. New Directions in Solid State Chemistry, Cambridge University Press, 1997, 296-301.
[5] C. Liu, J. Am. Chem. Soc., 2000, 122, 6263-6267.
[6] Y.C. Yang, J.A. Baker, J.R. Ward, Chem. Rev., 1992, 92, 1729-1743.
[7] G.W. Wagner, P.W. Bartam, O. Koper, K.J. Klabunde, J. Phys. Chem., 1999, 103, 3225-3228.
[8] G.W. Wagner, O.B. Koper, E. Lucas, S.Decker, K.J. Kabunde, J. Phys. Chem., 2000, 104, 5118-5123.
[9] G.W. Wagner, L.R. Procell, R.J. OÕConnor, S. Munavalli, C.L. Carnes, P.N.
Kapoor, K.J. Klabunde, J. Am. Chem. Soc., 2001, 123, 1636-1644.
[10] M. Sadeghi, M. Hosseini, H. Tafi, Int. J. Bio-Inorg. Hybd. Nanomat., 2013, 2, 281-293.
[11] K.J. Klabunde, J. Stark, O. Koper, C. Mohs, D.G.Park, S. Decker, Y. Jiang, I. Lagadic, D. Zhang, J. Phys. Chem., 1996, 100, 12142-12153.
[12] A. Mirzaei, M. Feyzi, F. Shayegh, H. R. Bozorgzadeh, A. Bigbabaei, American Scientific Publishers., 2004, 10, 767–780.
[13] I. Luisetto, F. Pepe, E. Bemporad, J Nanopart Res., 2008, 10, 59–67.
[14] E. Rios, P. Lara, D. Serafini, A.
Restovic, J. Gaytier, J. Chil. Chem. Soc., 2010, 2, 55-67.
[15] V.R. Shinde, S.B.Mahadik, T.P. Gujar,C.D. Lokhande, Applied Surface Science., 2006, 252, 7487-7492.
[16] J. Ahmed, T. Ahmed , K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Journal of Colloid and Interface Science., 2008, 321, 434-441.
[17] L. Sun, H.Li, L.Ren, C.Hu, Solid state Science., 2009, 11, 108-112.
[18] A. Rumplecker, F.Kleitz, E.L. Salabas, F. Schuth, Chem. Mater., 2007, 19, 485-496.
[19] H. Yang, Y.Hu, X. Zhang and G. Qui, Mate. Lett., 2004, 58, 387-389.
[20] T.Li, S.Yang, L.Huang, B.Gu ,Y.Du ,Chinese Phys. Lett., 2004, 21, 966-969.
[21] N. Camelia, T. Rusu, Jr. Yates, J. Phys. Chem. B., 2000, 104, 12292-12298.
[22] N.R.E.Radwan,M.S.El- Shall,H.M.A.Hassan, Applied Catalysis A:General., 2007, 331, 8-18.
[23] H.R. Shakur, Physica E., 2011, 44, 641–646.
[24] M. Sadeghi, M. Hosseini, J. Nano. Struc., 2013, 2, 439- 453.
[25] M. Sadeghi, S. Yekta, N. Shahabfar, M. Hosseini, H. Adeli, M. J. Taghizadeh, Int. J. Bio-Inorg. Hybd. Nanomat., 2014, 3, 117-123.
 
 
Google Scholar: Cited by 1        Related articles        All 4 versions     Cite      Save