Document Type : Original Research Article

Authors

Department of Chemistry, Payame Noor University, PB BOX 19395-4697 Tehran, Iran

Abstract

The conditional formal potential, E°′of Methyldopa has been studied by cyclic voltammetry at the surface of activated glassy carbon electrode (AGCE) as the working electrode in different pH phosphate buffered solutions. The experimental Standard redox potential, E°′, of Methyldopa is obtained to be 0.72 mV versus SHE (Standard Hydrogen Electrode). E°′ values have also been calculated with the aid of density functional theory (DFT) method at B3LYP/6-311G Basis set in conjunction with a Polarizable Continuum Model (PCM). Innovative application of both Direct and indirect methods resulted in theoretical standard electrode potentials of the studied Methyldopa in the order of 0.68 and 0.74 mV, respectively. These results were found to be in excellent agreement with the experimental value in the order of 0.72 mV.

Graphical Abstract

Determination of the absolute redox potential of methyldopa: experimental and simulation methodes

Keywords

Main Subjects

[1] D. Purres, Neurocience, 4th ed., Sinauer Associates, 2008.
[2] K.C. Kwan, J. Pharmacol. Exp. TSHE., 1976, 198, 264-277.
[3] E. Myhre, Clin. Pharmacokinet, 1982, 7, 221-233.
[4] H.M. Shiri, M. Ghasemi, S. Riahi, A. Akbari-sehat, Int.J. Electrochem.Sci., 2011, 6, 317-336.
[5] P.A. Fitzgerald, Greenspan`s Basic & clinical Endocrinology, Chapter 11. Adrenal Medulla and Paraganglia, 9th ed., McGraw-Hill, New York, 2011.
[6] P. Redgrave, K. Gurney, Nature Reviews Neuroscience, 2006, 7, 967-973.
[7] P. Winget, C.J. Cramer, D.G. Truhlar, Theo. Chem. Acc., 2004, 112, 217-227.
[8] Y. Fu, L. Liu, H.Z. Yu, Y.M. Wang, Q.X. Guo, J. Am. Chem. Soc., 2005, 127-133.
[9] Y. Fu, L. Liu, Y.M. Wang, J.N.  Li, T.Q. Yu, Q.X. Guo, J. Phys. Chem., 2006, 110, 5874-5883.
[10] P. Winget, C.J. Cramer, D.G. Truhlar Phys. Chem. Chem. Phys., 2000, 2, 1231-1236.
[11] C. Fontanesi, R. Benassi, R. Giovanardi, M. Marcaccio, F. Paolucci. S.  Roffia, J. Mol. Struct., 2002, 612, 277-286.
[12] H.S. Rzepa, G.A. Suner, J. Chem. Soc., Chem. Commun., 1993, 1743-1744.
[13] S.G. Lister, C.A. Reynolds, W.G. Richards, J. Quantum Chem., 1992, 41, 293-302.
[14] C.A. Reynolds, P.M. King, W.G. Richards, J. Chem. Soc., Chem. Commun.,  1988, 2, 1434-1436.
[15] R.G. Compton, P.M. King, C.A. Reynolds, W.G. Richards, A. M. Waller, J. Electroanal. Chem., 1989,258, 79-84.
[16] R. Compton, P.M. King, C.A. Reynolds, W.G. Richards, A.M. Waller, J. Electroanal. Chem., 1989, 258, 54-63.
[17] M. Namazian, H.A. Almodarresieh, J. Mol. Struct., Theochem, 2004, 686, 97-102.
[18] M. Namazian, H.A. Almodarresieh, Chem. Phys. Lett., 2004, 396, 424-428.
[19] M.W. Wong, K.B. Wiberg and M.J. Fri-
sch, J. Am.Chem. Soc., 1992,118, 1645-1652.
 [20] J.B. Foresman, A.E. Frisch, Exploring Chemistry With Electronic Structure Methods, Gaussian Inc., Pittsburgh, PA, 1998.
[21] N.Rega, M.Cossi, G.Scalmani, V.Barone, J. Comput. Chem., 1999, 20, 1186-1193.
[22] A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications, 2nd ed., John Wiley & Sons, Inc., New York, 2001.
[23] H.R. Zare, N. Nasirizadeh, M. Mazloum Ardakani, J. Electroanal. Chem. 2005, 577, 25-33.
[24] M. Namazian, H.A. Almodarresieh, M.R. Noorbala, H.R. Zare, Chem. Phys. Lett., 2004, 396, 424-428.
[25] M. Eslami, H.R. Zare, M. Namazian, Phys. Chem, 2012. 116, 12552-12557.
[26] M. Namazian, H.R. Zare, M.L. Coote, Aus.J. Chem., 2012, 65, 486-489.
[27] M. Namazian, H.R. Zare, Biophys. Chem., 2005, 117, 13-17.
[28] M. Namazian, H.R. Zare, M.L. Coote, Biophys. Chem., 2008, 132, 64-68.
[29] P. Winget, E.J. Weber, C.J. Cramer, D.G. Truhlar, Phys. Chem. Chem. Phys., 2000, 2, 1231-1237.
[30] Y. Marcus, Ion Solvation, John Wiley and sons: Ltd., 1985, 105-109.
[31] C. C. Lim, D. Bashford, M. Karplus, J.
Phys. Chem., 1991, 95, 5610-5615.