Organic chemistry
Mostafa Kazemi; Homa Kohzadi; Zahra Noori
Volume 2, Issue 1, pp. 1-81, Serial No. 2 , January 2014, , Pages 39-47
Abstract
A general, mild and efficient protocol has been developed for the synthesis of esters and thioesters. The process has been taking place using tetra n-butylammonium iodide (TBAI) as a phase-transfer catalyst and in the presence of potassium carbonate (K2CO3). A wide range of esters and thioesters was ...
Read More
A general, mild and efficient protocol has been developed for the synthesis of esters and thioesters. The process has been taking place using tetra n-butylammonium iodide (TBAI) as a phase-transfer catalyst and in the presence of potassium carbonate (K2CO3). A wide range of esters and thioesters was prepared in high yields and suitable times by the treatment of alcohols, phenols and thiols with acetic anhydride. Acylation reactions of a number of alcohols, phenols and thiols with acetic anhydride demonstrated that Potassium carbonate is a convenient and efficient catalyst for the synthesis of esters and thioesters. This is a mild, general and practical procedure for the synthesis of esters and thioesters in high yields and suitable times.
Organic chemistry
Sobhan Rezayati; Zahra Erfani; Saman Rezayati; Rahimeh Hajinasiri; Marzieh Rekavandi
Volume 2, Issue 1, pp. 1-81, Serial No. 2 , January 2014, , Pages 72-81
Abstract
1,1-Diacetates(acylals) were prepared by direct condensation of various aldehydes with acetic anhydride using dipyridine cobalt chloride (CoPy2Cl2) as an efficient and green catalyst under solvent-free conditions at room temperature. The important features of this catalyst method are that the catalyst ...
Read More
1,1-Diacetates(acylals) were prepared by direct condensation of various aldehydes with acetic anhydride using dipyridine cobalt chloride (CoPy2Cl2) as an efficient and green catalyst under solvent-free conditions at room temperature. The important features of this catalyst method are that the catalyst is solid, stable at high temperatures, soluble in water, stable in air, immiscible in common organic solvents, low toxic and, above all, it is reusable. CoPy2Cl2 can be recycled after a simple work-up and reused at least five runs without appreciable loss of its catalytic activity. High chemo-selectivity toward aldehyde in the presence of ketones is another advantage of the present method which provides selective protection of aldehydes in their mixtures with ketones.