Organic chemistry
Radineh Motamedi; Ghasem Rezanejade Bardajee; Somaye Shakeri
Volume 5, Issue 4, pp. 364-493, Serial No. 17 , October 2017, , Pages 442-448
Abstract
Some chromeno[4′,3′-b]pyrano[6,5-b]quinoline derivatives were synthesized by condensation of 2-amino-4-aryl-3-cyano-5-oxo-4H, 5H -pyrano-[3,2-c] chromenes and 1,3-cyclohexanedione in an environmentally benign and efficient method by Cu(II)-Schiff base/SBA-15 as an environmentally friendly ...
Read More
Some chromeno[4′,3′-b]pyrano[6,5-b]quinoline derivatives were synthesized by condensation of 2-amino-4-aryl-3-cyano-5-oxo-4H, 5H -pyrano-[3,2-c] chromenes and 1,3-cyclohexanedione in an environmentally benign and efficient method by Cu(II)-Schiff base/SBA-15 as an environmentally friendly heterogeneous and recyclable catalyst under solvent-free conditions in high yields and rates. These kinds of catalysts are built from mesoporous silica SBA-15 which was covalently anchored with Cu(II) Schiff base complex. The shorter reaction times, good yields, simple work-up procedure and environmentally friendly conditions are the main advantages of this method compared to the last one. The product was identified by its 1H NMR, mass and IR spectra, which were compared to those reported previously.
Organic chemistry
Radineh Motamedi; Sara Sobhani; Farshid Barani
Volume 5, Issue 3, pp. 237-363, Serial No. 16 , July 2017, , Pages 338-344
Abstract
Some Chromeno[4,3-b]quinoline derivatives were synthesized in a tricomponents one-pot reaction of 1,3-cyclohexadione arylaldehydes and 4-aminocoumarin under Microwave irradiation in the solventless system by using a heteropolyacid catalyst ,H3[PW12O40] in 80-95% yields and high rates. The shorter reaction ...
Read More
Some Chromeno[4,3-b]quinoline derivatives were synthesized in a tricomponents one-pot reaction of 1,3-cyclohexadione arylaldehydes and 4-aminocoumarin under Microwave irradiation in the solventless system by using a heteropolyacid catalyst ,H3[PW12O40] in 80-95% yields and high rates. The shorter reaction times, one-pot, good yields, simple work-up procedure and environmentally friendly conditions are the main advantages of this method compared to the two step method. Heteropolyacid is separated by filtration and the products were purified by flash column chromatography. The reactions were monitored by TLC and subsequent work-up afforded a single compound by TLC in each case. The product was identified by its 1H NMR, mass and IR spectra, which were compared to those reported previously.