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Abstract 

The quantitative structure–property relationship (QSPR) method is used to develop 

the correlation between structures of crude oil hydrocarbons (80 compounds) and 

their boiling point and water solubility. Sub-structural molecular fragments (SMF) 

calculated from structure alone were used to represent molecular structures. A subset 

of the calculated fragments selected using stepwise regression (forward and backward 

steps) (SR) was used in the QSPR model development. Multiple linear regressions 

(MLR) are utilized to construct the linear prediction model. The prediction results 

agree well with the experimental values of these properties. The comparison results 

indicate the superiority of the presented models and reveal that it can be effectively 

used to predict the boiling point temperatures and water solubility values of crude oil 

hydrocarbons from the molecular structures alone. The stability and predictivity of 

the proposed models were validated using internal validation (leave one out and leave 

many out) and external validation. Application of the developed models to test set of 

16 compounds demonstrates that the new model sare reliable with good predictive 

accuracy and simple formulation. 

Keywords: Boiling point; water solubility; crude oil hydrocarbon; ISIDA-QSPR; 

prediction. 
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Introduction 

Crude oil is a mixture of comparatively 

volatile liquid hydrocarbons. Crude oils are 

commonly characterized by the type of 

hydrocarbon compound, for example 

paraffins and naphthenes. The different 

hydrocarbon compounds will have different 

boiling point that in the refinery is separated 

by distillation. Boiling point and water 

solubility in crude oil hydrocarbons are 

important matters in the oil industry. The 

solubility of a substance is the amount of 

substance that will dissolve in a given 

amount of solvent. Solubility is a quantitative 

term that depends on the physical and 

chemical properties of the solute and solvent 

as well as on temperature and pressure. The 

water dissolved in crude oil can freeze and 

block the fuel line or pipe. For instance, 

dissolved water in the gas phase may form 

condensate, ice and gas hydrate which may 

lead to corrosion/erosion of pipelines, 

blockage of transfer lines, damage of 

compressor impeller, etc. [1–4]. The 

solubility of water in hydrocarbons, even at 

ambient temperatures, can have great 

practical importance [5]. The importance of 

the solubility of water in crude oil will 

increase in view of processing, safety, 

hazard, and environmental considerations 

focusing on product quality and equipment 

sustainability. 

The boiling point is one of the main 

physicochemical properties used to 

characterize and identify compounds [6]. The 

first work applying Quantitative Structure–

Property/Activity Relationships 

(QSPR/QSAR) to Boling Point was by 

Wiener [7]. Moreover, extensive efforts have 

been made to apply the structural information 

to fit experimental BP [8-12].In many 

physical-chemistry areas and organic 

compounds, it is increasingly necessary to 

translate those general relations into 

quantitative associations expressed in useful 

algebraic equations known as Quantitative 

Structure-Property (-Activity) Relationships 

(QSAR/QSPR) [13-14].Recently, the sub-

structural molecular fragments (SMF) 

method has been widely performed to predict 

many properties [15-17]. In this paper, we 

applied the sub-structural molecular fragment 

(SMF) method and described the QSPR 

modeling of Boiling Point (BP) and water 

solubility (logSw) for crude oil hydrocarbons 

using multiple linear regression approach and 

fragmental descriptors in ISIDA (In SILico 

design and Data Analysis) software.  
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Materials and methodology 

Data set 

The initial dataset used in this study consists 

of 80 crude oil hydrocarbons and properties 

from Handbook of Physical Properties for 

Hydrocarbons and Chemicals [18]. In the 

present study, the total set of hydrocarbons is 

partitioned into a training set including 64 

hydrocarbons and test set with 16 

hydrocarbons (see supplementary data). 

Computer and software 

In this study, the implementations ware 

performed using computer programs on a 

Lenovo laptop computer with windows 7 

operating system. At first, the molecular 

structures of all compounds were drawn by 

Chem Office program. Preoptimized using 

MM+ molecular mechanics methods and final 

geometries of the minimum energy 

conformation were obtained by more precise 

optimization with the semi-empirical AM1 

method (applying a root mean square 

gradient limit of 0.01 Kcal. mol-1. Å-1). 

Finally, SDF (Structure Data File) file of the 

resulted geometries compose by EdiSDF 

were put in to ISIDA/QSPR (version 

5.76.003, 2010) to calculate substructural 

molecular fragments. 

Molecular fragments 

The ISIDA/QSPR program realizes the 

substructural molecular fragments (SMF) 

method [19-24]; it uses two types of 

topological descriptors (fragments): 

“atom/bond sequences”, and “augmented 

atoms”. Three sub-types of molecular 

fragments of AB, A and B are defined for 

each class. For the fragments I, they 

represent sequences of atoms and bonds 

(AB), of atoms only (A), or of bonds only 

(B). Shortest or all paths from one atom to 

the other are used. For each type of 

sequences, the minimal (nmin) and maximal 

(nmax) number of constituted atoms must be 

defined. Thus, for the partitioning I (AB, nmin 

- nmax), I(A, nmin - nmax) and I(B, nmin - nmax), 

the program generates “intermediate” 

sequences involving n atoms (nminnnmax). 

In the current version of ISIDA/QSPR, nmin≥ 

2 and nmax 15. The number of sequences’ 

types of different length corresponding to 

nmin = 2 and nmax = 15 is equal to 105 for each 

of three sub-types AB, A and B, totally 315 

types of sequences. 

The key problem of any QSPR study is 

related to selection of pertinent descriptors to 

QSPR model. In ISIDA software, screening 

descriptors mainly follows three steps, 

namely filtering stage, forward stepwise pre-

selection stage and backward stepwise 

selection stage. In the first stage, the program 

eliminates variables which have a small 

correlation coefficient with the property, and 
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those highly correlated with other variables, 

which were already selected for the model. In 

the second stage, the suite of forward and 

backward stepwise algorithms has been used 

for variable pre-selection in ISIDA studies by 

the Variable Selection Suite (VSS) program. 

The final selection is performed using 

backward stepwise variable selection 

procedure based on the t statistic criterion. 

QSPR model in ISIDA/QSPR 

The modeled physical or chemical property Y 

can be quantitatively calculated accounting 

for contributions of fragments using linear, 

non-linear and fitting equations. In this study, 

descriptors calculated are based on linear 

equation (Equation 1). 

� = �� + ∑ ����� + β(1) 

Where ai is fragment contribution, Ni is the 

number of fragments of i type. The αi term is 

fragment independent and β term is external 

descriptors (e.g., topological, electronic, etc.) by 

default β = 0. Contributions of αi are calculated 

by minimizing a functional 

�[��] 	= 	
1

n

i
i

w

 (����,�– �����,�)

� => min(2) 

Where n is the number of the compoundsin 

the training set, wi the weight accounting for 

the accuracy of the experimental data, Yexp 

and Ypred are, respectively, experimental and 

calculated according to (equation 2) property 

values. The equation (1) represents the 

calculation of property Y by using additive 

contributions of fragments. The coefficients 

of the equation (1) being optimized at the 

training stage are then used to estimate Y 

values of the compounds from the test set or 

to screen external databases of real or virtual 

compounds. 

A significant advantage of SMF method 

is the possibility to select during the training 

stage several best fit models (instead of a 

single QSPR model) related to different 

fragmentation schemes. A Consensus Model 

(CM) can be calculated by ISIDA/QSPR 

program which combines the information 

issued from several models. Using singular 

value decomposition method (SVD), 

ISIDA/QSPR fits the ai terms in equations (3) 

and calculates corresponding statistical 

characteristics (correlation coefficient (R), 

standard deviation (s), Fischer’s criterion (F), 

cross-validation correlation coefficient (Q), 

standard deviation of predictions (sPRESS), 

Kubyni’s criterion (FIT), RH-factor of 

Hamilton and matrix of pair correlations (co-

variation matrix) for the terms( ai ) and 

performs statistical tests to select the best 

models. The predictive ability of the models 

is characterized by leave-one-out correlation 

coefficient Q2and by leave-one-out standard 

deviation sPRESS, as well as by dispersions of 
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predicted values of averages over several 

models [25]. 

Model validation 

All compounds in each initial data set can be 

randomly shuffled to avoid possible artificial 

ordering due to data preparation. Each initial 

data set was split into two sub-sets: training 

and test sets. The QSPR models were built on 

the training set followed by “prediction” 

calculations for the test set. So internal 

validation (Q2
loo) and external validation 

(Q2
ext) should be applied for evaluating the 

model. The internal validation of the model is 

necessary for robustness and possible high 

predictive power. In this research, we have 

applied the leave-one-out (LOO) for the 

internal validation, which is calculated 

according to the formula. 

����
� = � −

∑ (������)
���������

���

∑ (�����)�
��������
���

(3)                   

Where Yi , Y i and Y are the 

experimental, predicted, and averaged (over 

the entire training dataset) values of the 

samples in the training set. 

����
� = 1 −

∑ (������)
�����

���

∑ (�����)
�����

���

(4) 

Where Yi and Y i are respectively 

experimental, predicted values of the test set. 

The other useful parameters named squared 

correlation coefficient (R2) and root mean-

squared error (RMSE) were also employed to 

evaluate the performance of developed 

models, which are important indicators for 

linear correlation between predicted and 

experimental data. They characterize an 

ability of the model to reproduce 

quantitatively the experimental data. R2 is an 

indicator that measures the linear correlation 

degree between one variable and another. 

RMSE indicates the dispersion degree of the 

random error, which summarizes the overall 

error of the model. 

�� =
∑ (��,�������)

��
���

∑ (��,������)
��

���

(5) 

���� = �
�

�
∑ (��,��� − ��,����)

��
��� �

�.�

(6) 

Where Yi,exp is the experimental property in 

the sample i, Yi,pred represented the predicted 

property in the sample i , Y is the mean of 

experimental property in the prediction set 

and n is the total number of samples in the 

prediction set[26, 27]. 

Results and discussion   

A QSPR is a mathematical relationship 

between a property of chemical or is 

basically a statistical approach correlating the 

response property data with descriptors 

encoding chemical information, in this case 

Boling Point and water solubility in crude 

oil, and molecular fragments of the chemical. 
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We used the recently developed substructural 

molecular fragments (SMF) method which is 

based on the representation of the molecular 

graph by fragments and on the calculation of 

their contributions to a given property. In this 

paper, molecular fragments were as 

molecular descriptor and we chose the length 

of sequences respectively from two to eight. 

At the training stage, a linear model based on 

equation (1) involving types of fragments 

variables has been selected. Fragments 

contributions represented by the coefficients 

ai in equation (1) provide one with helpful 

information concerning the hydrocarbons. 

There are two types of descriptors in 

ISIDA/QSPR software: atom/bond 

sequences, and augmented atom, that three 

sub-types of descriptor of AB, A and B are 

defined for each class. For each type of 

Minimal (nmin) and Maximal (nmax) number 

of constituted atoms. In this study, fragments 

contribution illustrates 4 sequences 

containing 4 , 4 , 5 and 8 for boiling point, 4, 

5, 6 and 8 for logSw, atom and linking bonds 

are selected that were described in the Tables 

(1) and (2). In the 80 hydrocarbons selected, 

64 hydrocarbons were used as training set 

and 16 hydrocarbons for the test set. In this 

work, we study two properties of Boiling 

Point (BP) and water solubility (logSw) in 

crude oil hydrocarbons. The fragments 

contribution is calculated based on the 

following equation: 

�����	��	�� = �� + ∑(�� × ��) (7) 

whereAi is contributon of fragment i, Ni is 

the number of fragments and A0 term is 

fragment independent. In the equation (7), we 

predict property (BP and logSw) for crude oil 

hydrocarbons with 4 fragments descriptors. 

The analysis of the fragments contribution in 

the Tables(1)and (2) illustrate that: 1) some 

of the fragments bring positive(C-C-C-H and 

H-C-C-H) or negative(H-C-C-C-H and C-C-

C-C-C-C-C-C)  contributions into boiling 

point 2) some of the fragments bring 

positive(H-C-C-H and H-C-C-C-H) or 

negative(H-C-C-C-C-H and C-C-C-C-C-C-

C-C)contribution into logSw. It is seen that 

the greatest fragments coefficient have most 

effect on increasing property. The branched 

chain compounds have lower boiling points 

than the corresponding straight chain 

isomers.  We have already observed that the 

boiling point of straight chain is related to the 

number of carbon atom in their molecules. 

Increased intermoleculars are related to the 

greater molecule-molecule contact possible 

for larger alkanes.  

For example, the boiling point of n-

octane (398.83 Kelvin) is higher than the 

boiling point of 3-ethylhexane (391.83 
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Kelvin).This is due to the fact that the 

branching of the chain makes the molecular 

most compact and thereby decreases the 

surface area. Therefore, force that is acting 

here are van Der Waals dispersion forces 

which are proportional to surface area. The 

water solubility of the branched hydrocarbon 

isomers is higher in all instances than for the 

normal hydrocarbons, as a result, logarithm 

solubility of the branched hydrocarbons are 

higher than normal hydrocarbons, because 

more branching will reduce the size of the 

molecule, making it easier to solvate. 

 

 

Table1. Fragments contribution, coefficient (Ai), standard deviation and their t-Test 

ofthe Equation (7) for BP 

No Variable (i) Contribution (Ai) Standard deviation  t-Test 

0 A0 198.2671 8.590 23.07 

1 C-C-C-H 4.5245 0.308 14.71 

2 H-C-C-H 3.8259 0.195 19.67 

3 H-C-C-C-H -1.3124 0.250 5.24 

4 C-C-C-C-C-C-C-C -6.7028 1.300 5.14 

 

Table 2. Fragments contribution, coefficient(Ai), standard deviation and their t-Test 

of the Equation (7) for logSw 

no Variable (i) Contribution (Ai) Standard deviation  t-Test 

0 A0 2.1170 0.0139 151.72 

1 H-C-C-H -0.0041 0.0003 13.61 

2 H-C-C-C-H -0.0025 0.0002 11.06 

3 H-C-C-C-C-H -0.0012 0.0001 10.27 

4 C-C-C-C-C-C-C-C 0.0099 0.0021 4.77 

  

The statistical parameters QSPR-MLR 

model is illustrated in the Table 3 for BP is 

R2= 0.9966 and Q2= 0.9919, for logSw is 

R2= 0.9914 and Q2= 0.9785. As regards, 

proximity values of Q2 and R2, prediction 

logSw and BP is reliable. 
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  Table 3. Statistical parameters of QSPR/MLR 

models. 

Log Sw BP Statistical parameters for training and test sets 

R2= 0.9829 R2= 0.9933 Multiple correlation coefficient  (train) 

Q2
loo= 0.9785 Q2

loo= 0.9919 Squared Correlation coefficient LOO –CV (train) 

F = 851.8474 F = 2186.8388 Fischer's criterion (train) 

SD= 0.010,0.0167 S= 6.5044,5.3594 Standard deviation (train and test) 

RMSE= 

0.0096,0.01559 

RMSE= 

6.2452,5.013 

Root mean-squared error (train and test) 

MAE= 0.0070,0.0138 MAE=5.0799,4.428 Mean absolute error (train and test) 

Q2
ext= 0.9486 Q2

ext= 0.9951 Squared Correlation coefficient external prediction 

(test) 

 

The values of experimental, predicted 

and residuals data for training set and test set 

of BP and logSw are shown in supplementary 

data. The Figures 1 and 2 show that the 

predicted values are in good agreement with 

experimental values. Compared with the 

predicted result of the training and test set, 

the squared determination coefficient (R2) is 

very high and the prediction error is quite 

low.

 

Figure 1. Experimental and predicted values of boiling point for training and test sets 
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Figure 2.  Experimental and predicted values of water solubilityfor training and test sets 

 

Conclusion  

The prediction of boiling point and water 

solubility are an important matter of oil and 

gas industry. In this present work, we 

developed modeling QSPR based on the 

fragment descriptors in ISIDA software. 

Models based on a fragment (SMF 

descriptors) had higher prediction ability. 

MLR modeling method was used to QSPR 

study of BP and logSw data of 80 

hydrocarbons in crude oil. The results 

illustrated that the satisfactory models were 

obtained, and the prediction errors were 

small. The results indicate that a strong 

correlation exists between BP and logSw with 

fragments for hydrocarbons. 
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