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Abstract

The veterinary drugs residues are also important pollutants found in milk since veterinary drugs

are commonly used in cattle management. Considering the role of milk in human nutrition and

its wide consumption throughout the world, it is very important to ensure the milk quality. A

quantitative structure–retention relationship (QSRR) was developed using the partial least square

(PLS), Kernel PLS (KPLS) and Levenberg-Marquardt artificial neural network (L-M ANN) ap-

proach for chemometrics study. Genetic algorithm was employed as a factor selection procedure

for PLS and KPLS modeling methods. By comparing the results, GA-KPLS descriptors are se-

lected for L-M ANN. Finally, a model with a low prediction error and a good correlation coeffi-

cient was obtained by L-M ANN. This is the first research on the QSRR of veterinary drugs us-

ing the chemometrics models.
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Introduction

Many classes of antibiotics, such asmacro-

lides, sulphonamides, quinolones, anthelmin-

tics and tetracyclines, are widely adminis-

tered to food-producing animals for the pur-

poses of prevention and treatment of several

diseases as well as for promoting growth [1].

Residues of drugs in food can endanger con-
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sumers’ health. Short-term health effects in-

clude allergic and toxic reactions, and long-

term exposure could result in chronic toxic

effects or the development of antibiotic-

resistant bacteria in humans. Antimicrobial

agents in food, regardless of their minute

amounts, can be potentially carcinogenic.

Milk consumption has been promoted around

the world as it is an inexpensive source of

saturated fats, proteins and calcium. It pro-

vides the primary source of nutrition for

young mammals before they are able to di-

gest other types of food. Milk is known to be

a nutritious, wholesome food that is con-

sumed globally by humans. It is recommend-

ed for children and elderly women. The pres-

ence of antibiotics in milk can be very prob-

lematic because their residues can slow or

destroy the growth of the fermentation bacte-

ria as well as they can provoke allergic reac-

tions in some hypersensitive individuals. Dif-

ferent studies indicate that low-level doses of

antibiotics for long periods could result in

bacteria resistance [2].

To protect milk consumers’ health from

the presence of residues of veterinary drugs,

maximum residue levels (MRLs) of veteri-

nary drugs in food have been set up in the

Commission Regulation 37/2010 [3]. The

Commission includes MRLs for substances

that are normally employed to treat or pre-

vent animal diseases. However, as a conse-

quence of the unavoidable carry-over of coc-

cidiostats in non-target feed, maximum levels

(MLs) for residues of these substances in

food of animal origin have been set up in the

Commission Regulation 124/2009 [4].

The accurate detection of low levels of

antimicrobial drug residues in milk is not on-

ly of great importance for governmental con-

trol laboratories and the dairy industry, but

also for farmers to enable them to ensure that

contaminated milk from individual cows is

not consigned to the bulk tank. Milk may al-

so be cocontaminated with compounds of one

of the other four major antimicrobial drug

classes: the sulphonamides (e.g., sulphadia-

zine), tetracyclines (e.g., oxytetracycline),

macrolides (e.g., erythromycin) and aminog-

lycosides (e.g., neomycin) [5].

In order to ensure human food safety, the

European Union has set (MRLs) in milk for

some antibiotics, such as 10  g/kg for fen-

bendazol and 100  g/kg for enrofloxacin,

although for some antibiotics it is indicated

that they cannot be used in animals from

which milk is produced for human consump-

tion. These limits require the development of

sensitive and specific methods to monitor

and determine antibiotic residues in milk [6-

8].
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Several papers use bioassay techniques

for rapid determination of antibiotic residues

in food due to cost and simplicity of analyses

[9,10]. However, these methods do not dis-

tinguish among several classes of antibiotics,

and they only provide semiquantitative mea-

surements, so other techniques such as liquid

chromatography (LC) [1,11] or capillary

electrophoresis [12] are being used to detect

veterinary drugs in milk. LC has been the

most frequently instrumental technique

coupled with UV, photodiode array detection

[13,14] and fluorimetric detection [15].

However these conventional detection tech-

niques have been replaced by mass spectro-

metry (MS) detection, bearing in mind that

public health agencies rely on detection by

MS for unambiguous confirmation of antibi-

tiocs in foodstuff [16].

Recently, a novel approach represented

by LC–TOF MS has been introduced into the

analysis of pesticide residues in food. The

potential of this technique for both, target and

non-target analyses, has been demonstrated

in several studies [17–19]. Ongoing devel-

opments in instrument design have resulted

not only in extending dynamic range allow-

ing improved quantification, but also in high

attainable accuracy of mass measurements

(typically 2–5 ppm). This, in combination

with high spectral resolution (5000–12,000

FWHM, full width at half of maximum),

enables the identification of unknowns based

on elemental composition.

Prediction of physico–chemical proper-

ties of materials based on their molecular

structure has been one of the wishes of scien-

tists and engineers for a long time. One of the

best methods which have been applied for

this purpose is quantitative structure–

property relationships (QSPR) [20,21].

Quantitative structure–retention relationships

(QSRR) represent statistical models that

quantify the relation between the structure of

molecules and their chromatographic reten-

tion time, allowing the prediction of the RT

of novel compounds [22,23]. QSRR on the

RT has been reported for different types of

compounds [24-26]. The aim of the present

study is estimation of ability optimal descrip-

tors calculated with linear regression (the par-

tial least squares (PLS)) and non-linear regres-

sions (the kernel partial least squares (KPLS)

and Levenberg- Marquardt artificial neural

network (L-M ANN)) in QSRR analysis of

retention time (RT) of veterinary drugs in

milk. The stability and predictive power of

these models was validated using Leave-

Group-Out Cross-Validation (LGO CV) and

external test set techniques.

Computational

Computer hardware and software
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A Pentium IV personal computer (CPU at

3.06 GHz) with the Windows XP operating

system was used. The structures of the pesti-

cides were drawn with HyperChem version

7.0. All molecules were preoptimized using

molecular mechanics AM1 method in the

HyperChem program.  Some quantum de-

scriptor such as polarizability and orbital

energy of LUMO were calculated by using the

HyperChem software. The output files were

exported from Dragon for generating descrip-

tors developed by Todeschini et al [27].  The

GA-PLS, GA-KPLS, L-M ANN, cross valida-

tion and other calculations were performed in

MATLAB (Version 7.0, Math works, Inc).

Data set

A data set of veterinary drugs residues in raw

milk with their RT values were available from

the literature reported in this reference [28].

These data were obtained by ultra-

performance liquid chromatography coupled

to the time of flight mass spectrometry

(UPLC–TOFMS). These compounds are in-

cluded avermectines, benzimidazoles, beta-

agonists, beta-lactams, corticoides, macro-

lides, nitroimidazoles, quinolones, sulfona-

mides,m tetracyclines and some others.

An Acquity UPLC system coupled to

LCT Premier XE (Waters Corp., MA, USA)

was employed for all experiments. The chro-

matography was carried out on a Waters Ac-

quity UPLC BEH C18, 1.7  m 100×2.1 mm

column protected with a precolumn Van-

Guard Acquity UPLC BEH C18, 1.7  m

5×2.1 mm. The mobile phase consisted of

0.1% of formic acid in water and 0.1% of

formic acid in MeCN. Mass spectrometry was

performed using a LCT Premier XE (Waters,

Manchester, UK) equipped with a dual ESI

source (lock spray). The system was tuned for

optimum sensitivity and resolution using leu-

cine-enkephalin solution at 0.5 ng/  L infused

at 5  L/min in positive electrospray ioniza-

tion mode. The TOF was calibrated daily us-

ing sodium formate solution. The system was

operated in V mode with acquisition from 50

to 1150 m/z with a scan time of 0.2 s in order

to reach the best sensitivity. The name of stu-

died compounds and their experimental RT

values for training and test sets are shown in

Table 1 and Table 2, respectively.

The root mean square error of prediction

(RMSE) is a measurement of the average dif-

ference between predicted and experimental

values at the prediction stage. The RMSE can

be interpreted as the average prediction error,

expressed in the same units as the original

response values. The RMSEP was obtained

using the following formula:
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Where yi is the experimental RT value of the

pesticides in the sample i,
iy


represents the

predicted RT value in the sample i and n is the
total number of samples used in the test set.

Table 1. The compounds, structure, retention time (min), calculated and RMSE values by L-M ANN

model for training set

No Compounds Structure RT Exp RT Cal RMSE

Calibration Set

1 Sulfaguanidine C7H10N4O2S 0.95 0.88 0.007

2 Salbutamol C13H21NO3 1.48 1.34 0.015

3 Amoxicillin C16H19N3O5S 1.50 1.62 0.013

4 Olaquindox C12H13N3O4 1.55 1.46 0.010

5 Roxarsone C6H6AsNO6 1.57 1.51 0.007

6 Metronidazole C6H9N3O3 1.67 1.72 0.006

7 Dimetridazole-hydroxy C5H7N3O3 1.68 1.61 0.008

8 Thiabendazole-5-hydroxy C10H7N3OS 1.70 1.69 0.001

9 Sulfisomidine C12H14N4O2S 1.75 1.60 0.016

10 Sulfacetamide C8H10N2O3S 1.77 1.94 0.018

11 Cimbuterol C13H19N3O 1.79 1.82 0.003

12 Clopidol C7H7Cl2NO 1.82 1.79 0.003

13 Lincomycin C18H34N2O6S 1.88 1.89 0.001

14 Cefaclor C15H14ClN3O4S 1.89 1.83 0.007

15 Cefquinom C23H24N6O5S2 1.90 1.87 0.003

16 Levamisole C11H12N2S 1.92 1.81 0.011

17 Ternidazole C7H11N3O3 1.93 1.96 0.003

18 Sulfathiazole C9H9N3O2S2 2.00 2.10 0.011

19 Enoxacin C15H17FN4O3 2.02 2.03 0.001
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20 Trimethoprim C14H18N4O3 2.05 2.11 0.006

21 Norfloxacin C16H18FN3O3 2.07 1.95 0.013

22 Cephacetrile C13H13N3O6S 2.08 2.03 0.005

23 Fleroxacin C17H18F3N3O3 2.10 2.22 0.013

24 Carbadox C11H10N4O4 2.12 2.20 0.008

25 Oxytetracyclin C22H24N2O9 2.14 2.12 0.002

26 Cephradin C16H19N3O4S 2.15 2.18 0.003

27 Sulfamerazine C11H12N4O2S 2.17 2.30 0.014

28 Cefotaxime C16H17N5O7S2 2.18 1.99 0.020

29 Enrofloxacin C19H22FN3O3 2.24 2.29 0.005

30 Albendazole sulfoxide C12H15N3O3S 2.32 2.11 0.022

31 Cefazolin C14H14N8O4S3 2.34 2.30 0.004

32 Tetracyclin C22H24N2O8 2.35 2.26 0.010

33 Sulfamethazine C12H14N4O2S 2.37 2.55 0.019

34 Sulfamethoxypyridazine C11H12N4O3S 2.41 2.18 0.025

35 Ipronidazole-hydroxy C7H11N3O3 2.44 2.57 0.014

36 Demeclocyclin C21H21ClN2O8 2.45 2.68 0.024

37 Clenbuterol C12H18Cl2N2O 2.46 2.70 0.025

38 Difloxacin C21H19F2N3O3 2.47 2.61 0.015

39 Spiramycin I C43H74N2O14 2.51 2.48 0.003

40 Morantel C12H16N2S 2.52 2.52 0.000

41 Mebendazole-amine C14H11N3O 2.57 2.42 0.016

42 Dapsone C12H12N2O2S 2.60 2.67 0.008

43 Cefoperazone C25H27N9O8S2 2.62 2.53 0.010

44 Brombuterol C12H18Br2N2O 2.64 2.88 0.026

45 Chlortetracycline C22H23ClN2O8 2.67 2.79 0.013

46 Flubendazole-amine C14H10FN3O 2.69 2.64 0.005

47 Cyclobendazole C13H13N3O3 2.72 2.85 0.014

48 Carazolol C18H22N2O2 2.76 2.63 0.014
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49 Pyrimethamine C12H13ClN4 2.77 2.74 0.004

50 Cinoxacin C12H10N2O5 2.79 3.03 0.026

51 Oxibendazole C12H15N3O3 2.82 2.92 0.011

52 Sulfaethidol C10H12N4O2S2 2.83 2.67 0.017

53 Cefamandole C18H18N6O5S2 2.84 3.03 0.020

54 Tilmicosin C46H80N2O13 2.86 2.93 0.008

55 Sulfatroxazole C11H13N3O3S 2.88 2.67 0.022

56 Sulfisoxazole C11H13N3O3S 2.94 2.77 0.018

57 Ceftiofur C19H17N5O7S3 2.98 3.04 0.007

58 Oxolinic acid C13H11NO5 2.99 3.07 0.008

59 Sulfabenzamide C13H12N2O3S 3.13 3.05 0.009

60 Cephalothin C16H16N2O6S2 3.17 3.22 0.005

61 Sulfadimethoxine C12H14N4O4S 3.18 3.15 0.003

62 Erythromycin C37H67NO13 3.19 2.90 0.031

63 Hydrocortisone C21H30O5 3.21 2.91 0.032

64 Natamycin C33H47NO13 3.22 3.10 0.013

65 Fenbendazole sulfone C15H13N3O4S 3.29 2.97 0.034

66 Mebendazole C16H13N3O3 3.33 3.25 0.008

67 Benzocaine C9H11NO2 3.34 3.46 0.013

68 Penicillin G C16H18N2O4S 3.41 3.13 0.029

69 6a-Methylprednisolone C22H30O5 3.48 3.16 0.034

70 Tiamulin C28H47NO4S 3.49 3.57 0.008

71 Betamethasone C22H29FO5 3.55 3.63 0.008

72 Flubendazole C16H12FN3O3 3.58 3.23 0.037

73 Sulfanitran C14H13N3O5S 3.63 3.28 0.037

74 Troleandomycin C41H67NO15 3.64 3.41 0.024

75 Roxithromycin C41H76N2O15 3.66 3.72 0.007

76 Leucomycin A1 C40H67NO14 3.67 3.35 0.034

77 Oxacillin C19H19N3O5S 3.79 3.69 0.011
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78 Josamycin C42H69NO15 3.80 3.90 0.011

79 Triflupromazine C18H19F3N2S 3.88 4.05 0.018

80 Zeranol C18H26O5 4.01 4.16 0.016

81 Cloxacillin C19H18ClN3O5S 4.03 3.69 0.035

82 Ketoprofen C16H14O3 4.11 4.07 0.004

83 Praziquantel C19H24N2O2 4.17 4.12 0.005

84 Meloxicam C14H13N3O4S2 4.22 4.10 0.013

85 Dicloxacillin C19H17Cl2N3O5S 4.31 4.01 0.032

86 Febantel C20H22N4O6S 4.90 5.07 0.018

87 Novobiocin C31H36N2O11 5.06 5.26 0.021

88 Tolfenamic acid C14H12ClNO2 5.35 5.59 0.026

89 Abamectin C48H72O14 6.53 6.50 0.003

90 Ivermectin B1a C48H74O14 7.36 7.44 0.009

Prediction Set

91 Cefsulodin C22H20N4O8S2 1.45 1.36 0.017

92 Diethylcarbamazine C10H21N3O 1.60 1.66 0.010

93 Cephapirin C17H17N3O6S2 1.72 1.92 0.036

94 Ronidazole C6H8N4O4 1.88 2.20 0.058

95 Thiabendazole C10H7N3S 1.90 1.87 0.006

96 Ampicillin C16H19N3O4S 2.00 1.95 0.009

97 Marbofloxacin C17H19FN4O4 2.02 2.34 0.059

98 Pefloxacin C17H20FN3O3 2.10 2.04 0.012

99 Pyrantel C11H14N2S 2.16 2.47 0.056

100 Danofloxacin C19H20FN3O3 2.19 2.57 0.069

101 Clenproperol C11H16Cl2N2O 2.26 2.19 0.013

102 Sulfameter C11H12N4O3S 2.41 2.34 0.012

103 Tulobuterol C12H18ClNO 2.45 2.24 0.038

104 Cefuroxime C16H16N4O8S 2.51 2.32 0.035

105 Sulfamonomethoxine C11H12N4O3S 2.59 2.83 0.044
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106 Cefoxitin C16H17N3O7S2 2.67 2.56 0.021

107 Ticlopidine C14H14ClNS 2.71 3.13 0.076

108 Oxfendazole C15H13N3O3S 2.78 2.65 0.024

109 Sulfamethoxazole C10H11N3O3S 2.83 2.69 0.025

110 Carbenicillin C17H18N2O6S 2.96 3.55 0.107

111 Sulfachlorpyrazine C10H9ClN4O2S 3.15 3.25 0.018

112 Sulfaquinoxaline C14H12N4O2S 3.19 3.20 0.001

113 Promethazine C17H20N2S 3.32 3.30 0.004

114 Albendazole C12H15N3O2S 3.36 3.39 0.006

115 Nalidixic acid C12H12N2O3 3.54 3.60 0.012

116 Flumequine C14H12FNO3 3.64 3.92 0.052

117 Virginiamycin M1 C28H35N3O7 3.82 3.58 0.045

118 Naproxen C14H14O3 4.13 3.76 0.067

119 Rifaximin C43H51N3O11 4.53 4.70 0.031

120 Eprinomectin B1a C50H75NO14 6.18 5.76 0.077

Table 2. The compounds, structure, RT, calculated and RMSE values by L-M ANN model for test set

No Compounds Structure RT Exp RT Cal RMSE

Test Set

1 Metronidazole-hydroxy C6H9N3O4 1.48 1.80 0.058

2 Cefadroxil C16H17N3O5S 1.62 1.99 0.068

3 Procaine C13H20N2O2 1.70 1.73 0.005

4 Dimetridazole C5H7N3O2 1.88 1.98 0.018

5 Sulfadiazine C10H10N4O2S 1.89 2.01 0.022

6 Diaveridine C13H16N4O2 1.93 1.84 0.017

7 Minocyclin C23H27N3O7 2.00 1.90 0.019

8 Cefalexin C16H17N3O4S 2.05 2.23 0.032

9 Sulfapyridine C11H11N3O2S 2.08 2.40 0.059

10 Ciprofloxacin C17H18FN3O3 2.17 2.26 0.016
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11 Sulfamoxole C11H13N3O3S 2.28 2.34 0.011

12 Sulfamethizole C9H10N4O2S2 2.37 2.37 0.000

13 Sarafloxacin C20H17F2N3O3 2.44 2.94 0.091

14 Xylazine C12H16N2S 2.45 2.74 0.053

15 Mebendazole-5-hydroxy C16H15N3O3 2.62 2.58 0.007

16 Sulfachlorpyridazine C10H9ClN4O2S 2.69 3.34 0.119

17 Doxycyclin C22H24N2O8 2.78 3.13 0.063

18 Sulfadoxine C12H14N4O4S 2.82 2.76 0.010

19 Albendazole sulfone C12H15N3O4S 2.87 3.27 0.073

20 Ipronidazole C7H11N3O2 2.98 3.38 0.072

21 Prednisolone C21H28O5 3.17 3.00 0.031

22 Tylosin C46H77NO17 3.30 3.00 0.056

23 Bromhexine C14H20Br2N2 3.41 3.38 0.005

24 Dexamethasone C22H29FO5 3.58 3.37 0.039

25 Penicillin V C16H18N2O5S 3.67 3.39 0.051

26 Fenbendazole C15H13N3O2S 3.86 4.63 0.140

27 Nafcillin C21H22N2O5S 4.13 3.98 0.028

28 Flunixin C14H11F3N2O2 4.31 3.93 0.070

29 Emamectin B1a C49H75NO13 5.11 5.91 0.146

30 Doramectin C50H74O14 6.84 7.44 0.110

Determination of molecular descriptors

Molecular descriptors are defined as numeri-

cal characteristics associated with chemical

structures. The molecular descriptor is the fi-

nal result of a logic and mathematical proce-

dure which transforms chemical information

encoded within a symbolic representation of a

molecule into a useful number applied to cor-

relate physical properties. The Dragon soft-

ware was used to calculate the descriptors in

this research and a total of molecular descrip-

tors, from 18 different types of theoretical de-

scriptors, were calculated for each molecule.

Since the values of many descriptors are re-

lated to the bonds length, bonds angles and

etc., the chemical structure of every molecule

must be optimized before calculating its mo-

lecular descriptors. For this reason, the chemi-
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cal structure of the 150 studied molecules

were drawn with Hyperchem software and

saved with the HIN extension. To optimize

the geometry of these molecules, the AM1

geometrical optimization was applied. After

optimizing the chemical structures of all com-

pounds, the molecular descriptors were calcu-

lated using Dragon. A wide variety of descrip-

tors have been reported in the literature, hav-

ing been used in QSRR analysis.

Nonlinear model

Artificial neural network

A three-layer back propagation artificial

neural network ANN with a sigmoid transfer

function was used in the investigation of fea-

ture sets. The descriptors from the calibration

set were used for the model generation whe-

reas the descriptors from the prediction set

were used to stop the overtraining of net-

work. The descriptors from the test set were

used to verify the predictivity of the model.

Before training the networks, the input and

output values were normalized with auto-

scaling of all data [29-32]. The goal of train-

ing the network is to minimize the output er-

rors by changing the weights between the

layers.

1,,  nijnnij WFW  (2)

In this, ijW is the change in the weight

factor for each network node, α is the mo-

mentum factor, and F is a weight update

function, which indicates how weights are

changed during the learning process. The

weights of hidden layer were optimized using

the Levenberg-Marquardt algorithm, a

second derivative optimization method [33].

Levenberg-Marquardt Algorithm

In Levenberg-Marquardt algorithm, the up-

date function, Fn, is calculated using equa-

tions.

00 gF  (3)

eJg T (4)

eJIJJF TT
n  1][  (5)

Where g is gradient and J is the Jacobian

matrix that contains first derivatives of the

network errors with respect to the weights,

and e is a vector of network errors. The pa-

rameter µ is multiplied by some factor (λ)

whenever a step would result in an increased

e and when a step reduces e, µ is divided by

λ [34].

Results and discussion

Linear model

Results of the GA-PLS model

The best model is selected on the basis of the

highest square correlation coefficient leave-

group-out cross validation (R2), the least root
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mean squares error (RMSE) and relative error

(RE). These parameters are probably the

most popular measure of how well a model

fits the data. The best GA-PLS model con-

tains twelve selected descriptors in four latent

variables space. The R2, mean RE and RMSE

for training and test sets were (0.826, 0.731),

(12.26, 20.48) and (0.034, 0.132), respective-

ly. The predicted values of RT are plotted

against the experimental values for training

and test sets in Fig 1. In general, the number

of components (latent variables) is less than

the number of independent variables in PLS

analysis. The PLS model uses higher number

of descriptors that allow the model to extract

better structural information from descriptors

to result in a lower prediction error.
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Figure 1. Plots of predicted retention time

against the experimental values

Nonlinear model

Results of the GA-KPLS model

In this paper, a radial basis kernel function,

k(x,y)= exp(||x-y||2/c), was selected as the

kernel function with 2rmc  where r is a

constant that can be determined by consider-

ing the process to be predicted (here r was set

to be 1), m is the dimension of the input

space and 2 is the variance of the data [35,

36]. It means that the value of c depends on

the system under the study. The 10 descrip-

tors in 7 latent variables space chosen by

GA-KPLS feature selection methods were

contained. The R2, mean RE and RMSE for

training and test sets were (0.833, 0.764),

(11.92, 17.09) and (0.031, 0.105), respective-

ly. The Q2 for training and test sets GA-PLS

and GA-KPLS models are (0.839, 0.717) and

(0.847, 0.759), respectively. It can be seen

from these results that statistical results for

GA-KPLS model are superior to GA-PLS

method. The plots of the residuals versus the

experimental RT values obtained by the GA-

KPLS modeling, is demonstrated in Figure 2.
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Figure 2. Plots of predicted RT versus the expe-

rimental values
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Results of the L-M ANN model

With the aim of improving the predictive per-

formance of nonlinear QSRR model, L-M

ANN modeling was performed. The net-

works were generated using the ten descrip-

tors appearing in the GA-KPLS models as

their inputs and RT as their output. For ANN

generation, data set was separated into three

groups: calibration, prediction (training) and

test sets. All molecules were randomly

placed in these sets. A three-layer network

with a sigmoid transfer function was de-

signed for each ANN. Before training the

networks, the input and output values were

normalized between -1 and 1. The network

was then trained using the training set by the

back propagation strategy for optimization of

the weights and bias values. The proper

number of nodes in the hidden layer was de-

termined by training the network with differ-

ent number of nodes in the hidden layer. The

root-mean-square error (RMSE) value meas-

ures how good the outputs are in comparison

with the target values. It should be noted that

for evaluating the overfitting, the training of

the network for the prediction of RT must

stop when the RMSE of the prediction set

begins to increase while RMSE of calibration

set continues to decrease. Therefore, training

of the network was stopped when overtrain-

ing began. All of the above mentioned steps

were carried out using basic back propaga-

tion, conjugate gradient and Levenberge-

Marquardt weight update functions. It was

realized that the RMSE for the training and

test sets are minimum when three neurons

were selected in the hidden layer. Finally, the

number of iterations was optimized with the

optimum values for the variables. It was rea-

lized that after 18 iterations, the RMSE for

prediction set were minimum. The RMSE,

mean relative error and R2 for calibration,

prediction and test sets were (0.013, 4.63,

0.978), (0.031, 7.11, 0.933) and (0.049, 9.45,

0.891), respectively. Comparison between

these values and other statistical parameter

reveals the superiority of the L-M ANN

model over other model. In Tables 1 and 2,

the predicted and RMSE values of RT ob-

tained by the L-M ANN model are presented.

The key strength of neural networks, unlike

regression analysis, is their ability to carry

out flexible mapping of the selected features

by manipulating their functional dependence

implicitly. The statistical parameters reveal

the high predictive ability of L-M ANN

model. The whole of these data clearly dis-

plays a significant improvement of the QSRR

model consequent to nonlinear statistical

treatment. The Q2 for calibration, prediction

and test sets was (0.977, 0.940, 0.905), re-

spectively.
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Plot of predicted RT versus experimental

RT values by L-M ANN for training and test

sets are shown in Figure 3a and Figure 3b.

Obviously, there is a close agreement be-

tween the experimental and predicted RT and

the data represent a very low scattering

around a straight line with respective slope

and intercept close to one and zero. As can be

seen in this section, the L-M ANN is more

reproducible than other models for modeling

the RT of veterinary drugs in milk.
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Figure 3. Plot of predicted RT obtained by L-M ANN against the experimental values (a) for training set

and (b) test set

Model validation and statistical parame-

ters

The accuracy of proposed models was illu-

strated using the evaluation techniques such

as leave group out cross-validation (LGO-

CV) procedure, validation through an exter-

nal test set. In addition, chance correlation

procedure is a useful method for investigat-

ing the accuracy of the resulted model, by

which one can make sure if the results were

obtained by chance or not. Cross validation

is a popular technique used to explore the

reliability of statistical models. Based on this

technique, a number of modified data sets are

created by deleting one or a small group

(leave-some-out) of objects in each case. For

each data set, an input–output model is de-

veloped, based on the utilized modeling

technique. Each model is evaluated by mea-

suring its accuracy in predicting the res-

ponses of the remaining data (the ones or

group data that have not been utilized in the

development of the model). In particular, the

LGO-CV procedure was utilized in this

study. A QSRR model was then constructed

on the basis of this reduced data set and sub-

sequently used to predict the removed data.

This procedure was repeated until a complete
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set of predicted was obtained. The statistical

significance of the screened model was

judged by the correlation coefficient (Q2).

The predictive ability was evaluated by the

cross validation coefficient (Q2 or R2
cv). The

accuracy of cross validation results is exten-

sively accepted in the literature considering

the Q2 value. In this sense, a high value of the

statistical characteristic (Q2 > 0.5) is consi-

dered as proof of the high predictive ability

of the model.

The data set should be divided into three

new sub-data sets, one for calibration and

prediction (training) and the other one for

testing. The calibration set was used for

model generation. The prediction set was ap-

plied dealing with overfitting of the network

whereas test set which its molecules have no

role in model building was used for the eval-

uation of the predictive ability of the models

for external set [37].

In the other hand, by means of training

set, the best model is found and then, its pre-

diction power is checked by test set as an ex-

ternal data set. In this work, 60% of the data-

base was used for calibration set, 20% for

prediction set and 20% for test set [38, 39],

randomly (in each running program, from all

150 components, 90 components are in cali-

bration set, 30 components are in prediction

set and 30 components are in test set).

The result clearly displays a significant

improvement of the QSRR model consequent

to non-linear statistical treatment and a sub-

stantial independence of model prediction

from the structure of the test molecule. In the

above analysis, the descriptive power of a

given model has been measured by its ability

to predict RT of unknown drug molecules.

Conclusion

The GA-PLS, GA-KPLS and L-M ANN

models were applied for the prediction of the

RT values of veterinary drugs in milk. High

correlation coefficients and low prediction

errors confirmed the good predictability of

models. All methods seemed to be useful al-

though a comparison between these methods

revealed the slight superiority of the L-M

ANN over other models. Application of the

developed model to a testing set of 30 com-

pounds demonstrates that the new model is

reliable with good predictive accuracy and

simple formulation. The QSRR procedure

allowed us to achieve a precise and relatively

fast method for determination of RT of dif-

ferent series of pesticides to predict with suf-

ficient accuracy the RT of new compounds.
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