Document Type: Original Research Article

Authors

Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran

10.30473/icc.2020.50210.1641

Abstract

Synthesis of widespread types of nanoparticles including metal oxides by plant extract is considered as alternative chemical synthesis methods. ZnO nanoparticles are synthesized by a biological process using flaxseeds (Linum usitatissimum L.) extract. The biosynthesized ZnO NPs were characterized by XRD and SEM, EDX, DLS spectroscopy. According to the SEM images, the synthesized nanoparticles are spherical shape with agglomeration and based on XRD, average crystallite size of the ZnO NPs is 15.45 nm.

Graphical Abstract

Keywords

Main Subjects

[1] C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Chem. Eur. J., 2002, 8, 28-35.

[2] J. Zheng, M.S. Stevenson, R.S. Hikida, P.G.V. Patten, J. Phys. Chem. B., 2002, 106, 1252-1255.

[3] P. Raveendran, J. Fu, L. Scott, J. Am. Chem. Soc., 2003, 125, 13940-13941.

[4] F. Mafune, J. Kohno, Y. Takeda,T.J. Kondow, J. Phys. Chem. B., 2002, 106, 7575-7577.

[5] G. Zhang, D. Wang, J. Am .Chem. Soc., 2008, 130, 5616-5617.

[6] M. Treguer, C. Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J.J. Belloni, Phy. Chem. B., 1998, 102, 4310-4321.

[7] W. Chen,W. Cai, L. Zhang, G. Wang, L. Zhang, J. Colloid. Inter. Sci., 2001, 238, 291-295.

[8] A. Frattini, N. Pellegri, D. Nicastro, O. de Sanctis, Mat. Chem. Phy., 2005, 94, 148-152.

[9] W.J. Jeong, S.K. Kim, G.C. Park, Thin Solid Films, 2006, 506, 180-183.

[10] J. Xu, Q. Pan, Y. Shun, Z. Tian, Sensor. Actuat. B-Chem., 2000, 66, 277-279.

 [11] K. Rekha, M. Nirmala, M.G. Nair, A. Anukaliani, Physica. B., 2010, 405, 3180-3185.

[12] Z. Dang, L. Fan. S. Zhao, C. Nan, Mat. Res. Bull., 2003, 38, 499-507.

[13] M.C. Yeber, J. Rodríguez, J. Freer, N. Durán, H.D. Mansilla, Chemosph., 2000, 41, 1193-1197.

[14] F. Xu, P. Zhang, A. Navrotsky, Chem. Mat., 2007, 19, 5680-5686.

[15] N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, FEMS. Microbiol. Lett., 2008, 279, 71-76.

[16] C. Hanley, J. Layne, A. Punnoose, Nanotechnology, 2008, 19, 295103.

[17] H. Wang, D Wingett, M.H. Engelhard, J. Mater. Sci. Mater. Med., 2009, 20, 11-22.

[18] P.R. RathiSre, M. Reka, R. Poovazhagi, M. Arul Kumar, K. Murugesan, Spectrochim. Acta A., 2015, 135, 1137-1144.

[19] B.N. Singh, A.K.S. Rawat, W. Khan, A.H. Naqvi, B.R. Singh, PLOS One, 2014, 9, e106937.

[20] R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan, S.I. Hong, Mat. Sci. Eng., C 2014, 41, 17-27.

[21] R. Raliya, J.C. Tarafdar, H. Mahawar, R. Kumar, P. Gupta, T. Mathur, R.K. Kaul, K. Praveen, A. Kalia, R. Gautam, S.K. Singh, H.S. Gehlot, Int. J. Biol. Macromol., 2014, 65, 362-368.

[22] G. Sangeetha, S. Rajeshwari, R. Venckatesh, Mater. Res. Bull., 2011, 46, 2560-2566.

[23] C. Jayaseelan, A.A. Rahuman, A.V. Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik, K.V.B. Rao, Spectrochim. Acta A., 2012, 90, 78-84.

[24] P. Vanathi, P. Rajiv, S. Narendhran, S. Rajeshwari, P.K.S.M. Rahman, R. Venckatesh, Mater. Lett., 2014, 134, 13-15.

[25] P.S. Ravindra, K.S. Vineet, S.Y. Raghvendra, K.S. Prashant, G.P. Avinash, Adv. Mat. Lett., 2011, 2, 313-317.

[26] G. Sangeetha, S. Rajeshwari, V. Rajendran, Mat. Res. Bull., 2011, 46, 2560-2566.

[27] P.C. Nagajyothi, T.N. MinhAn, T.V.M. Sreekanth, L. Jae-il, L. Dong Joo, K.D. Lee, Mat. Lett., 2013, 108, 160-164.

[28] R. Hajinasiri, B. Norozi, H. Ebrahimzadeh, Chem. Lett., 2016, 45, 1238-1240.

[29] A. Mari, R. Mookkaiah, M. Elayaperumal, Asian J. Green Chem., 2019, 3, 418-549.

[30] M. Anbuvannan, M. Ramesh, E. Manikandan, R. Srinivasan, Asian J. Nanosci. Mater., 2019, 2, 99-110

[31] P. Gharbani, A. Mehalizadeh, Asian J. Nanosci. Mater., 2019, 2, 27-36.

[32] S. Sajjadifar, S. Rezayati, Z. Arzehgar, S. Abbaspour, M. Torabi Jafroudi, J. Chin. Chem. Soc., 2018, 65, 457-480.

[33] A. Sajjadi, R. Mohammadi, J. Med. and Chem. Sci., 2019, 2, 55-58.

[34] I. Amar, Z. Alshibani, M. AbdulQadir, I. Abdalsamed, F. Altohami, Adv. J. Chem. A., 2019, 2, 365-376.

[35] F. Mohammadi, M. Yousefi, R. Ghahremanzadeh, Adv. J. Chem. A., 2019, 2, 266-275.

[36] A. Moghimi, M. Yari, J. Chem. Rev., 2019, 1, 1-18.

[36] S. Taghavi Fardood, A. Ramazani, F. Moradnia, Z. Afshari, S. Ganjkhanlu, F. Yekke Zare, Chem. Method., 2019, 3, 696-706.

[37] S. Kamran, N. Amiri Shiri, Chem. Method., 2018, 2, 23-38.

[38] V.A.S. Calderelli, M.T. Benassi, J.V.Visentainer, G. Matioli,. Braz. Arch. of Biol. Tech., 2010, 53, 981-986.

[39] W. Herchi, D. Arráez-Román, H. Trabelsi, I. Bouali, S. Boukhchina, H. Kallel, A.F ernández-Gutierrez, J. Oleo Sci., 2014, 63, 701-707.

[40] W. Herchi, A.D. Hujaili, F. Sakouhi, K.Sebei, H. Trabelsi, H. Kallel, S. Boukhchina, J. Oleo Sci., 2014, 63, 681-689.

[41] P. Kajla, A. Sharma, D.R. Sood, J. Food. Sci. Tech., 2014, 52, 1857-2488.

[42] A.F. Koca, M. Anil, J. Sci. Food Agric., 2010, 87, 1172-1175.

[43] K. Struijs, J.P. Vincken, R. Verhoef, W.H.M. van Ostveen-van Casteren, A.G.J. Voragen, H. Gruppen, Phytochemistry, 2007, 68, 1227-1235.

[44] D. Draganescu, C. Ibanescu, B.I. Tamba, C.V. Andritoiu, G. Dodi, M.I. Popa, J. Bio. Macromol., 2015, 72, 614-623.

[45] S. Mercier, S. Villeneuve, C. Moresoli, M. Mondor, B. Marcos, K.A. Power, Compr. Rev. Food. Sci. Food. Saf., 2014, 13, 400-412.

[46] M. Hao, T. Beta, Food Chem., 2012, 133, 1320-1325.

[47] M. Sabbaghan, A.S. Shahvelayati, S. Banihashem, Ceram. Int., 2016, 42, 3820-3825. (b) H. Abdul Salam, R. Sivaraj, R. Venckatesh, Mat. Lett., 2014, 131, 16-18.

[48] R. John, R. Rajakumari, Nano-Micro Lett., 2012, 4, 65-72.

[49] M. Ramesh, M. Anbuvannan, G. Viruthagiri, Spectrochim. Acta, Part A, 2015, 136, 864.

[50] S. Ambika. M. Sundrarajan , J. Photochem. Photobiol., 2015, 146, 52-57. (b) P. Bowen, J. Disper. Sci. Tech., 2002, 23, 631-662. (c) S. Honary, F. Zahir, Trop. J. Pharm. Res., 2013, 12, 255-264. (d) J.D. Clogston, K.P. Anil, Characterization of nanoparticles intended for drug delivery, 2011, 63-70.

[51] C.N.R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York and London, 1963.